首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学   26篇
物理学   1篇
  2019年   1篇
  2016年   1篇
  2013年   3篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 109 毫秒
21.
22.
Increasing mass tourism can generate important microclimatic perturbations and also elevate indoor pollution by the transport of fine particulate matter. The purpose of this research was to study the indoor air conditions in the Royal Museum of Wawel Castle in Cracow, Poland, displaying amongst other valuable works of art also a unique collection of Flemish tapestries. The investigation involved in the determination of transport and deposition of particulate matter brought in by visitors. The microclimate inside the exhibition rooms was also monitored. Samples of suspended particulates were collected inside and outside the museum in winter and summer 2006. On days with intensive tourist visits the concentration of total suspended particulates was significantly higher (i.e., 130 µg/m3 in winter and 49 µg/m3 in summer) than on those days without tourists (i.e., 73 µg/m3 and 22 µg/m3 in winter and summer, respectively). The concentrations of all investigated elements were also considerably higher during the tourist flow. This was especially valid for soil dust associated elements (Si, K, Ca, Al, and Ti), with considerably higher levels in summer than winter. This could be linked with much more frequent tourist activity in the summer period. Also, the concentration of Cl was much higher in winter than summer, due to the use of de-icing salts on the roads and pavements.  相似文献   
23.
The investigation of hunter-gatherers archaeological sites in the Limay river basin, Patagonia, Argentina, raised questions concerning the lithic technology. The chemical characterization of artifacts, rocks and possible sources of provenances could help to elucidate the hunter-gatherer mobility. In three archaeological sites—Rincón Chico 2 (RCh2/87; 14C 710 ± 60 BP), Cueva Traful I (CTI; 14C 9430 ± 230 BP) and Casa de Piedra de Ortega (CPO; 14C 2840 ± 80 BP), tools and debitage or discarded flakes made in black volcanic rock have been found. Nearby an extensive rock outcrop of black volcanite, Paso Limay quarry (CPL), with similar characteristics was located. Samples coming from these four sites were analyzed by energy dispersive X-ray fluorescence spectrometry. This characterization allowed the geochemical classification of the lithic material and to correlate the samples with the suspected source after a previous statistical analysis. The majority of the samples were classified as dacites and rhyolites. Only samples coming from CPO site, the closest place to CPL were made exclusively with the quarry rocks. A set of five samples from RCh2/87 and two samples from CTI appear to have same chemical composition as CPL in spite of this site is placed in the opposite bank of the Limay river suggesting that hunter-gatherers could accede to the quarry, eventually. Finally, only a set of five samples coming from RCh2/87 and CTI do not group with the quarry. This fact evidences the existence of secondary sources of supply. The information of this research allowed inferring ancient human mobility patterns in the region.  相似文献   
24.
Determination of the surface roughness by AFM is crucial to the study of particle fouling in nanofiltration. It is, however, very difficult to compare the different roughness values reported in the literature because of a lack in uniformity in the methods applied to determine surface roughness. AFM is used in both noncontact mode and tapping mode; moreover, the size of the scan area is highly variable. This study compares, for six different nanofiltration membranes (UTC-20, N30F, Desal 51HL, Desal 5DL, NTR7450, NF-PES-10), noncontact mode AFM with tapping mode AFM for several sizes of the scan area. Although the absolute roughness values are different for noncontact AFM and tapping mode AFM, no difference is found between the two modes of AFM in ranking the nanofiltration membranes with respect to their surface roughness. NTR 7450 and NF-PES-10 are the smoothest membranes, while the roughest surface can be found with Desal 51HL and Desal 5DL. UTC-20 and N30F are characterized by an intermediate roughness value. An increase in roughness with increasing scan area is observed for both AFM modes. Larger differences between the roughnesses of the membranes are obtained with tapping mode AFM because of the tapping of the tip on the surface. Phase imaging is an extension of tapping mode AFM, measuring the phase shift between the cantilever oscillation and the oscillation of the piezo driver. This phase shift reflects the interaction between the cantilever and the membrane surface. A comparison with contact angle measurements proves that a small phase shift corresponds to a large contact angle, representing a hydrophobic membrane surface.  相似文献   
25.
The adsorption of organic compounds in aqueous solution on polymeric nanofiltration membranes is studied; this process is one of the most important fouling mechanisms influencing the flux and retention behavior of nanofiltration membranes. It is shown that the adsorption of dissolved organic compounds on polymeric nanofiltration membranes is comparable to that on activated carbon. Freundlich and Langmuir isotherms are used to describe the relation between the adsorbed mass on the membrane and the equilibrium concentration of the organic compound in a single-compound solution. Based on these results, three models for the adsorption of solutions containing several compounds [i.e., the simple competitive adsorption model (SCAM), the model of Jain-Snoeyinck, and the model of Butler-Ockrent] were used to predict the adsorption behavior of an organic compound in an aqueous solution containing two compounds. The results of the three models were compared to experimental observations. It is shown that the SCAM allows a good prediction of the adsorption behavior.  相似文献   
26.
Fouling of nanofiltration membranes is studied during filtration of aqueous surfactant solutions under different conditions. To this purpose, four typical nanofiltration membranes (Desal51HL, NF270, NTR7450 and NFPES10) and three typical surfactants (nonionic neodol, anionic SDBS and cationic cetrimide) are selected. Fouling is studied as a function of the surfactant concentration, with and without addition of an electrolyte (NaCl), at different pH and when filtering a mixture of surfactants. Adsorption experiments and hydrophobicity measurements (to study the orientation of the surfactants on the membrane surface) are also performed under the different conditions. The least membrane fouling is found for the anionic surfactant SDBS, while for the cationic surfactant cetrimide very low relative fluxes are observed. Neodol shows an intermediate degree of fouling. Both hydrophobic and electrostatic interactions (in the case of ionic surfactants) between the membrane surface and the surfactant explain the degree of adsorption and hence fouling, as membrane fouling is correlated with the amount of adsorbed surfactant. The difference between cetrimide and SDBS becomes especially visible when changing the pH: increasing the pH leads not only to an opposite orientation of the adsorbed surfactants, but also to an opposite trend in adsorbed amount and membrane fouling. This study permits selection of an optimal nanofiltration membrane to recycle wastewater containing surfactants in the carwash industry. The optimal choice would be a hydrophilic membrane with a low molecular weight cut-off and a small negative surface charge at neutral pH. Cationic surfactants in the wastewater should also be avoided as much as possible.  相似文献   
27.
Citrullination is a post-translational modification (PTM) that results from the deimination of the amino acid arginine into citrulline by Peptidyl Arginine Deiminase enzymes and occurs in a wide range of proteins in health and disease. This modification causes a 1 Da mass shift, which can be used to identify citrullination sites in proteins by the use of mass spectrometry. However, other PTMs, such as deamidation from asparagine to aspartic acid or from glutamine to glutamic acid, can also cause a 1 Da mass shift, making correct interpretation of the data more difficult. We developed a chemical tagging strategy which, combined with an open source search application, allowed us to selectively pinpoint citrullinated peptides in a complex mixture after liquid chromatography/mass spectrometry (LC/MS) analysis. After incubation of a peptide mixture with 2,3 butanedione, citrulline residues were covalently modified which resulted in a 50 Da shift in singly charged mass. By comparison of the peptide mass fingerprint from a modified and an unmodified version of the same sample, our in-house search application was able to identify the citrullinated peptides in the mixture. This strategy was optimized on synthetic peptides and validated on a digest of in vitro citrullinated fibrinogen, where different proteolytic enzymes were used to augment the protein coverage. This new method results in easy detection of citrullinated residues, without the need for complex mass spectrometry equipment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号