首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   10篇
化学   211篇
晶体学   1篇
力学   3篇
数学   17篇
物理学   23篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   14篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   9篇
  2013年   6篇
  2012年   29篇
  2011年   31篇
  2010年   10篇
  2009年   6篇
  2008年   16篇
  2007年   19篇
  2006年   21篇
  2005年   14篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1990年   1篇
  1985年   1篇
  1978年   1篇
  1970年   1篇
排序方式: 共有255条查询结果,搜索用时 31 毫秒
51.
Magnetite nanoparticles were synthesized and functionalized by coating the particle surfaces with gum arabic (GA) to improve particle stability in aqueous suspensions (i.e. biological media). Particle characterization was performed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) to analyze the morphology and quantify the size distribution of the nanoparticles, respectively. The results from DLS indicated that the GA-treated nanoparticles formed smaller agglomerates as compared to the untreated samples over a 30-h time frame. Thermogravimetric analyses indicated an average weight loss of 23%, showing that GA has a strong affinity toward the iron oxide surface. GA most likely contributes to␣colloid stability via steric stabilization. It was determined that the adsorption of GA onto magnetite exhibits Langmuir behavior.  相似文献   
52.
A star k-edge-coloring is a proper k-edge-coloring such that every connected bicolored subgraph is a path of length at most 3.The star chromatic indexχ'st(G)of a graph G is the smallest integer k such that G has a star k-edge-coloring.The list star chromatic index ch'st(G)is defined analogously.The star edge coloring problem is known to be NP-complete,and it is even hard to obtain tight upper bound as it is unknown whether the star chromatic index for complete graph is linear or super linear.In this paper,we study,in contrast,the best linear upper bound for sparse graph classes.We show that for everyε>0 there exists a constant c(ε)such that if mad(G)<8/3-ε,then■and the coefficient 3/2 ofΔis the best possible.The proof applies a newly developed coloring extension method by assigning color sets with different sizes.  相似文献   
53.
54.
Although nanomaterials facilitate significant technological advancement in our society, their potential impacts on the environment are yet to be fully understood. In this study, two environmentally relevant bacteria, Shewanella oneidensis and Bacillus subtilis, have been used as model organisms to elucidate the molecular interactions between these bacterial classes and Au nanoparticles (AuNPs) with well-controlled and well-characterized surface chemistries: anionic 3-mercaptopropionic acid (MPA), cationic 3-mercaptopropylamine (MPNH2), and the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH). The data demonstrate that cationic, especially polyelectrolyte-wrapped AuNPs, were more toxic to both the Gram-negative and Gram-positive bacteria. The levels of toxicity observed were closely related to the percentage of cells with AuNPs associated with the cell surface as measured in situ using flow cytometry. The NP concentration-dependent binding profiles were drastically different for the two bacteria strains, suggesting the critical role of bacterial cell surface chemistry in determining nanoparticle association, and thereby, biological impact.  相似文献   
55.

Abstract  

A new iodobismuthate of formula [BiI2(terpy)2][BiI4(terpy)] (terpy = 2,2′:6′,2′′-terpyridine), was prepared solvothermally in an ethanolic mixture composed of bismuth (III) iodide, terpy, and ruthenium (III) iodide. The compound crystallizes in the space group P [`1] \bar{1} , with Z = 2, a = 9.8491(4) ?, b = 15.4181(7) ?, c = 17.5323(8) ?, α = 89.8140(10)°, β = 80.4160(10)°, γ = 77.9020(10)°. Single-crystal X-ray analysis reveals that the compound is composed of a [BiI2(terpy)2]+ cation and a [BiI4(terpy)] anion. It is an uncommon example where an iodobismuthate cation and anion are simultaneously incorporated into the same crystal structure.  相似文献   
56.
Dioxetanone, a key component of the bioluminescence of firefly luciferin, is itself a chemiluminescent molecule due to two conical intersections on its decomposition reaction surface. While recent calculations of firefly luciferin have employed four electrons in four active orbitals [(4,4)] for the dioxetanone moiety, a study of dioxetanone [F. Liu et al., J. Am. Chem. Soc. 131, 6181 (2009)] indicates that a much larger active space is required. Using a variational calculation of the two-electron reduced-density-matrix (2-RDM) [D. A. Mazziotti, Acc. Chem. Res. 39, 207 (2006)], we present the ground-state potential energy surface as a function of active spaces from (4,4) to (20,17) to determine the number of molecular orbitals required for a correct treatment of the strong electron correlation near the conical intersections. Because the 2-RDM method replaces exponentially scaling diagonalizations with polynomially scaling semidefinite optimizations, we readily computed large (18,15) and (20,17) active spaces that are inaccessible to traditional wave function methods. Convergence of the electron correlation with active-space size was measured with complementary RDM-based metrics, the von Neumann entropy of the one-electron RDM as well as the Frobenius and infinity norms of the cumulant 2-RDM. Results show that the electron correlation is not correctly described until the (14,12) active space with small variations present through the (20,17) space. Specifically, for active spaces smaller than (14,12), we demonstrate that at the first conical intersection, the electron in the σ(?) orbital of the oxygen-oxygen bond is substantially undercorrelated with the electron of the σ orbital and overcorrelated with the electron of the carbonyl oxygen's p orbital. Based on these results, we estimate that in contrast to previous treatments, an accurate calculation of the strong electron correlation in firefly luciferin requires an active space of 28 electrons in 25 orbitals, beyond the capacity of traditional multireference wave function methods.  相似文献   
57.
The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25 °C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.  相似文献   
58.
Fluorescence and electrochemical microfluidic biosensors were developed for the detection of cholera toxin subunit B (CTB) as a model analyte. The microfluidic devices were made from polydimethylsiloxane (PDMS) using soft lithography from silicon templates. The polymer channels were sealed with a glass plate and packaged in a polymethylmethacrylate housing that provided leakproof sealing and a connection to a syringe pump. In the electrochemical format, an interdigitated ultramicroelectrode array (IDUA) was patterned onto the glass slide using photolithography, gold evaporation and lift-off processes. For CTB recognition, CTB-specific antibodies were immobilized onto superparamagnetic beads and ganglioside GM1 was incorporated into liposomes. The fluorescence dye sulforhodamine B (SRB) and the electroactive compounds potassium hexacyanoferrate (II)/hexacyanoferrate (III) were used as detection markers that were encapsulated inside the liposomes for the fluorescence and electrochemical detection formats, respectively. Initial optimization experiments were carried out by applying the superparamagnetic beads in microtiter plate assays and SRB liposomes before they were transferred to the microfluidic systems. The limits of detection (LoD) of both assay formats for CTB were found to be 6.6 and 1.0 ng mL−1 for the fluorescence and electrochemical formats, respectively. Changing the detection system was very easy, requiring only the synthesis of different marker-encapsulating liposomes, as well as the exchange of the detection unit. It was found that, in addition to a lower LoD, the electrochemical format assay showed advantages over the fluorescence format in terms of flexibility and reliability of signal recording.  相似文献   
59.
The aggregation of beta-lactoglobulin (BLG) at ambient temperature was studied using turbidimetry and dynamic light scattering in the range 3.8相似文献   
60.
Two boron complexes of 5-phenyldipyrromethenes bearing isothiocyanate groups on the phenyl ring have been synthesized for the first time. The utility of these new fluorescence probes for labeling biologically relevant proteins is demonstrated on two monoclonal antibodies that bind to antigens overexpressed on cancer cells. Spectral comparison of the two structures reveals significant photophysical differences, including bathochromically shifted excitation and emission bands, increased molar absorptivity and a large increase in fluorescence quantum yield of approximately 10 times. Differences in photophysical parameters are linked to hindered rotation of the phenyl ring in one of the probes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号