首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   42篇
  国内免费   5篇
化学   482篇
力学   2篇
数学   74篇
物理学   21篇
  2024年   1篇
  2023年   7篇
  2022年   6篇
  2021年   9篇
  2020年   21篇
  2019年   17篇
  2018年   8篇
  2017年   8篇
  2016年   24篇
  2015年   27篇
  2014年   36篇
  2013年   36篇
  2012年   61篇
  2011年   70篇
  2010年   46篇
  2009年   25篇
  2008年   37篇
  2007年   30篇
  2006年   20篇
  2005年   17篇
  2004年   11篇
  2003年   9篇
  2002年   11篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1981年   4篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
481.
Formation of C? C bonds from CO2 is a much sought after reaction in organic synthesis. To date, other than C? H carboxylations using stoichiometric amounts of metals, base, or organometallic reagents, little is known about C? C bond formation. In fact, to the best of our knowledge no catalytic methylation of C? H bonds using CO2 and H2 has been reported. Described herein is the combination of CO2 and H2 for efficient methylation of carbon nucleophiles such as indoles, pyrroles, and electron‐rich arenes. Comparison experiments which employ paraformaldehyde show similar reactivity for the CO2/H2 system.  相似文献   
482.
Two macrolide glycosides with a unique scaffold were isolated from cultures of the myxobacterium Pyxidicoccus fallax. Their structures, including absolute configurations, were elucidated by a combination of NMR, MS, degradation, and molecular modeling techniques. Analysis of the proposed biosynthetic gene cluster led to insights into the biosynthesis of the polyketide and confirmed the structure assignment. The more active compound, disciformycin B, potently inhibits methicillin‐ and vancomycin‐resistant Staphylococcus aureus.  相似文献   
483.
The development of new antibiotics faces a severe crisis inter alia owing to a lack of innovative chemical scaffolds with activities against Gram‐negative and multiresistant pathogens. Herein, we report highly potent novel antibacterial compounds, the myxobacteria‐derived cystobactamids 1 – 3 , which were isolated from Cystobacter sp. and show minimum inhibitory concentrations in the low μg mL?1 range. We describe the isolation and structure elucidation of three congeners as well as the identification and annotation of their biosynthetic gene cluster. By studying the self‐resistance mechanism in the natural producer organism, the molecular targets were identified as bacterial type IIa topoisomerases. As quinolones are largely exhausted as a template for new type II topoisomerase inhibitors, the cystobactamids offer exciting alternatives to generate novel antibiotics using medicinal chemistry and biosynthetic engineering.  相似文献   
484.
Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS- acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (KD) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer’s disease and Parkinson’s disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.
Figure
?  相似文献   
485.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C? N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   
486.
A general epoxidation of aromatic and aliphatic olefins has been developed under mild conditions using heterogeneous CoxOy–N/C (x=1,3; y=1,4) catalysts and tert‐butyl hydroperoxide as the terminal oxidant. Various stilbenes and aliphatic alkenes, including renewable olefins, and vitamin and cholesterol derivatives, were successfully transformed into the corresponding epoxides with high selectivity and often good yields. The cobalt oxide catalyst can be recycled up to five times without significant loss of activity or change in structure. Characterization of the catalyst by XRD, TEM, XPS, and EPR analysis revealed the formation of cobalt oxide nanoparticles with varying size (Co3O4 with some CoO) and very few large particles with a metallic Co core and an oxidic shell. During the pyrolysis process the nitrogen ligand forms graphene‐type layers, in which selected carbon atoms are substituted by nitrogen.  相似文献   
487.
Formation of C C bonds from CO2 is a much sought after reaction in organic synthesis. To date, other than C H carboxylations using stoichiometric amounts of metals, base, or organometallic reagents, little is known about C C bond formation. In fact, to the best of our knowledge no catalytic methylation of C H bonds using CO2 and H2 has been reported. Described herein is the combination of CO2 and H2 for efficient methylation of carbon nucleophiles such as indoles, pyrroles, and electron‐rich arenes. Comparison experiments which employ paraformaldehyde show similar reactivity for the CO2/H2 system.  相似文献   
488.
One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light‐harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar‐energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer‐based membrane systems containing LHCII–pigment complexes ready for light harvesting. LHCII was produced by cell‐free protein synthesis based on wheat‐germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins.  相似文献   
489.
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high‐pressure stopped‐flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine‐N‐oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.  相似文献   
490.
Whole resting cells of cyano- and thio-bacteria Synechococcus and Paracoccus spp. were shown to possess inverting alkylsulfatase activity for a broad spectrum of sec-alkylsulfate esters, which furnished either (R)- or (S)-sec-alcohols from the corresponding rac-sulfate esters in an enantiocomplementary fashion. Low enantioselectivities (E-values 1–4) could be dramatically improved by the addition of lower alcohols (e.g., t-BuOH) or by using a biphasic medium containing t-BuOMe (E >200).  相似文献   
[首页] « 上一页 [44] [45] [46] [47] [48] 49 [50] [51] [52] [53] [54] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号