首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   100篇
化学   840篇
晶体学   2篇
力学   7篇
数学   39篇
物理学   70篇
  2024年   2篇
  2023年   14篇
  2022年   14篇
  2021年   29篇
  2020年   38篇
  2019年   47篇
  2018年   31篇
  2017年   13篇
  2016年   53篇
  2015年   66篇
  2014年   58篇
  2013年   61篇
  2012年   91篇
  2011年   83篇
  2010年   45篇
  2009年   33篇
  2008年   50篇
  2007年   40篇
  2006年   39篇
  2005年   28篇
  2004年   14篇
  2003年   12篇
  2002年   11篇
  2001年   7篇
  2000年   14篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1973年   1篇
  1969年   1篇
  1959年   2篇
  1958年   1篇
  1957年   1篇
  1943年   1篇
  1937年   3篇
  1936年   2篇
  1925年   1篇
排序方式: 共有958条查询结果,搜索用时 15 毫秒
81.
We herein report a new design route to stable, heterophase photocatalysts, which function as highly dispersible conjugated polymer nanoparticles and porous monoliths under visible light in aqueous medium. They were constructed by attachment of the ionic‐liquid species 1‐alkyl‐3‐vinylimidazolium bromide onto the side chains of a photoactive polymer. The structure configuration allows not only photocatalysis in aqueous environment but also a unique self‐initiation radical cross‐linking process to transform the water‐soluble photoactive polymer into a heterophase system, either as nanoparticles or a porous monolith. High photocatalytic activity and reusability of the heterophase system were demonstrated in the degradation of organic dyes and reduction of CrVI into CrIII in water under visible‐light irradiation.  相似文献   
82.
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G?C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[?H]?C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G?C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*?C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA.  相似文献   
83.
Some microorganisms perform anaerobic mineral respiration by reducing metal ions to metal nanoparticles, using peptide aggregates as medium for electron transfer (ET). Such a reaction type is investigated here with model peptides and silver as the metal. Surprisingly, Ag+ ions bound by peptides with histidine as the Ag+‐binding amino acid and tyrosine as photoinducible electron donor cannot be reduced to Ag nanoparticles (AgNPs) under ET conditions because the peptide prevents the aggregation of Ag atoms to form AgNPs. Only in the presence of chloride ions, which generate AgCl microcrystals in the peptide matrix, does the synthesis of AgNPs occur. The reaction starts with the formation of 100 nm Ag@AgCl/peptide nanocomposites which are cleaved into 15 nm AgNPs. This defined transformation from large nanoparticles into small ones is in contrast to the usually observed Ostwald ripening processes and can be followed in detail by studying time‐resolved UV/Vis spectra which exhibit an isosbestic point.  相似文献   
84.
Synthetic polyesters are usually composed of monohydroxycarboxylic acids to avoid the problem of regioselectivity during ring‐opening polymerization. In contrast, the linear polyester BICpoly contains four secondary OH groups and is nevertheless esterified regioselectively at only one of these positions. Neither the synthesis of the tricyclic monomers nor the ring‐opening polymerization requires protecting groups, making BICpoly an attractive novel and biocompatible polymer. BICpoly nanoparticles can be loaded with low‐molecular weight drugs or coated onto surfaces as thin films. The release of loaded compounds makes BICpoly an attractive depot for drug release, as shown herein by loading BICpoly with dyes or the cytostatic drug doxorubicin. BICpoly is distinguishable from other polymers by its characteristic pH‐dependent degradation.  相似文献   
85.
Polymer nanocapsules with high diffusion‐barrier performance were designed following simple thermodynamic considerations. Hindered diffusion of the enclosed material leads to high encapsulation efficiencies (EEs), which was demonstrated based on the encapsulation of highly volatile compounds of different chemical natures. Low interactions between core and shell materials are key factors to achieve phase separation and a high diffusion barrier of the resulting polymeric shell. These interactions can be characterized and quantified using the Hansen solubility parameters. A systematic study of our copolymer system revealed a linear relationship between the Hansen parameter for hydrogen bonding (δh) and encapsulation efficiencies which enables the prediction of encapsulated amounts for any material. Furthermore EEs of poorly encapsulated materials can be increased by mixing them with a mediator compound to give lower overall δh values.  相似文献   
86.
87.
This work provides experimental evidence on how the molecular compositions of fuel-rich low-pressure premixed flames are influenced as the oxygenates dimethyl ether (DME) or ethanol are incrementally blended into the propene fuel. Ten different flames with a carbon-to-oxygen ratio of 0.5, ranging from 100% propene (phi = 1.5) to 100% oxygenated fuel (phi = 2.0), are analyzed with flame-sampling molecular-beam mass spectrometry employing electron- or photoionization. Absolute mole fraction profiles for flame species with masses ranging from m/z = 2 (H2) to m/z = 80 (C6H8) are analyzed with particular emphasis on the formation of harmful emissions. Fuel-specific destruction pathways, likely to be initiated by hydrogen abstraction, appear to lead to benzene from propene combustion and to formaldehyde and acetaldehyde through DME and ethanol combustion, respectively. While the concentration of acetaldehyde increases 10-fold as propene is substituted by ethanol, it decreases as propene is replaced with DME. In contrast, the formaldehyde concentration rises only slightly with ethanol replacement but increases markedly with addition of DME. Allyl and propargyl radicals, the dominant precursors for benzene formation, are likely to be produced directly from propene decomposition or via allene and propyne. Benzene formation through propargyl radicals formed via unsaturated C2 intermediates in the decomposition of DME and ethanol is negligibly small. As a consequence, DME and ethanol addition lead to similar reductions of the benzene concentration.  相似文献   
88.
The speciation of uranium(VI) in micromolar aqueous solutions at ambient atmosphere was studied by attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy and by speciation modeling applying the updated NEA thermodynamic database. It can be shown that reliable infrared spectra of micromolar U(VI) solutions are obtained abolishing the restrictions of previous spectroscopic investigations to millimolar concentrations and, consequently, to the acidic pH range. A significant change of the U(VI) speciation can be derived from the spectral alterations of the absorption band representing the antisymmetric stretching mode (nu3) of the UO2(2+) ion observed upon lowering the U(VI) concentration from the milli- to the micromolar range at a constant pH 4 value. The acquisition of spectra of diluted U(VI) solutions allows the increase of the pH up to 8.5 without the risk of formation of colloidal or solid phases. The infrared spectra are compared to the results of the computed speciation patterns. Although a complete interpretation of the spectra can not be given at this state of knowledge, the spectral data strongly suggest the presence of monomeric U(VI) hydroxo species already showing up at a pH value > or = 2.5 and dominating the speciation at pH 3. This is in contradiction to the predicted speciation where the fully hydrated UO2(2+) is expected to represent the main species at pH values below 4. At ambient pH, a more complex speciation is suggested compared to the results of the computational modeling technique. The predicted dominance of the UO2(CO3)3(4-) complex at pH > or = 8 was not confirmed by the infrared data. However, the infrared spectra indicate the formation of hydroxo complexes obviously containing carbonate ligands.  相似文献   
89.
Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c‐type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105 e s?1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+/Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.  相似文献   
90.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号