首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
化学   68篇
数学   8篇
物理学   13篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   9篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   1篇
  1999年   1篇
排序方式: 共有89条查询结果,搜索用时 171 毫秒
31.
Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.  相似文献   
32.
This work demonstrates the suitability of a newly developed ionic liquid (IL)-based silica SPME fiber for the determination of seven organophosphorus insecticides in cucumber and grapefruit samples by headspace solid-phase microextraction (HS-SPME) with a gas chromatography–flame ionization detector (FID). The sol-gel method released four different sorbent coatings, which were obtained based on a silica matrix containing ILs immobilized inside its pores. In order to obtain ionogel fibers, the following ionic liquids were utilized: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide; Butyltriethyl ammonium bis(trifluoromethylsulfonyl)imide; 1-(2-Methoxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-Benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The developed fibers were applied for the extraction of seven different insecticides from liquid samples. The most important extraction parameters of HS-SPME coupled with the GC-FID method were optimized with a central composite design. The new SPME fiber demonstrated higher selectivity for extracting the analyzed insecticides compared with commercially available fibers. The limit of detection was in the range of 0.01–0.93 μg L−1, the coefficients of determination were >0.9830, and 4.8–10.1% repeatability of the method was found. Finally, the obtained ionogel fibers were utilized to determine insecticides in fresh cucumber and grapefruit juices.  相似文献   
33.
The work is devoted to a computational study of three types of cationic polymeric membranes in Li+-ionic form, in water and methanol environments, at various solvation levels. The studied membranes Nafion, IonClad, and M3 possess the perfluorinated backbone; however, various side chains were terminated with the functional groups of distinctly different ionic strength. The paper discusses the structural features of the membrane-solvent clusters as well as an influence of the side chain nature on the dissociation of the functional groups and the binding energy of the solvent molecules. Additionally, the paper compares the obtained results for Li+-Nafion membrane in water with the results published earlier for H+ and Na+ forms.  相似文献   
34.
35.
36.
Chemical structure and catalytic activity of nonplatinum porphyrin-based electrocatalyst for oxygen reduction is characterized by combination of X-ray photoelectron spectroscopy (XPS) and rotating disk electrode. The goal of the study is to show how modifications in the molecular structure affect catalytic characteristics and how to use these structural modifications in a purposeful manner to increase catalytic activity. Initial correlation of structure to electrochemical performance is achieved through the application of principal component analysis (PCA) to curve-fits of high-resolution XPS spectra combined with results of electrochemical measurements. Furthermore, a predictive model that describes this correlation is build using the combination of genetic algorithm (GA) and multiple linear regression (MLR). Based on structure-to-property correlations, two types of active sites responsible for the catalytic activity, i.e., Co associated with pyropolymer and Co particles covered by oxide layer, are determined, and a dual-site for oxygen reduction on cobalt porphyrins is hypothesized, allowing for designing a catalyst structure with optimal performance characteristics.  相似文献   
37.
We use a layer-by layer electrostatic self-assembly technique to obtain in-plane oriented aggregates of mesogenic dye molecules cast from lyotropic chromonic liquid crystals (LCLCs) on mica substrates. The aqueous solutions of dye used for deposition are in the nematic phase. Atomic force microscopy and X-ray photoelectron spectroscopy of the dried film reveal that the LCLC molecules adsorb at the charged substrate preserving ordered aggregates of elongated shape characteristic of the nematic phase in the aqueous solution. These elongated aggregates of LCLC molecules form films with in-plane orientational order and are compositionally distinct from the substrate.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号