首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   8篇
  国内免费   1篇
化学   231篇
晶体学   2篇
力学   2篇
数学   17篇
物理学   17篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   12篇
  2020年   15篇
  2019年   7篇
  2018年   2篇
  2017年   8篇
  2016年   6篇
  2015年   12篇
  2014年   14篇
  2013年   13篇
  2012年   21篇
  2011年   18篇
  2010年   10篇
  2009年   15篇
  2008年   12篇
  2007年   14篇
  2006年   13篇
  2005年   11篇
  2004年   12篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
21.
Establishing structure–reactivity relationships for specific channel orientations of zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, a well‐defined model system was developed to build structure–reactivity relationships for specific zeolite‐channel orientations during various catalytic reaction processes, for example, the methanol‐ and ethanol‐to‐hydrocarbons (MTH and ETH) process as well as oligomerization reactions. The entrapped and effluent hydrocarbons from single‐oriented zeolite ZSM‐5 channels during the MTH process were monitored by using operando UV/Vis diffuse reflectance spectroscopy (DRS) and on‐line mass spectrometry (MS), respectively. The results reveal that the straight channels favor the formation of internal coke, promoting the aromatic cycle. Furthermore, the sinusoidal channels produce aromatics, (e.g., toluene) that further grow into larger polyaromatics (e.g., graphitic coke) leading to deactivation of the zeolites. This underscores the importance of careful engineering of materials to suppress coke formation and tune product distribution by rational control of the location of zeolite acid sites and crystallographic orientations.  相似文献   
22.
The isothiocyanato Zn(II) complex (1) and mixed isothiocyanato/thiocyanato Cd(II) complex (2) with the condensation product of 2-acetylpyridine and trimethylammoniumacetohydrazide chloride (Girard’s T reagent) (HLCl) were investigated both experimentally and theoretically. The crystal structures of both complexes showed tridentate N2O coordination of hydrazine ligand. In complex 1 square-pyramidal coordination surrounding of Zn(II) consists of deprotonated hydrazone ligand and two isothiocyanato ligands, while in octahedral Cd(II) complex ligand is coordinated without deprotonation as a positively charged species and coordination geometry is completed with two N-coordinated and one S-coordinated NCS? anions. NMR spectroscopy and molar conductivity results for Cd(II) and Zn(II) complexes indicated their instability in solution. DFT calculations were performed to explain coordination preference and stability of complexes 1 and 2 in solid state and in solution. The obtained Cd(II) complex is the first reported mononuclear pseudohalide/halide Cd(II) complex with quinoline-/pyridine-based hydrazone ligands possessing octahedral geometry in solid state. In this complex, H-bonding has significant impact on coordination number and supramolecular assembly in solid state.  相似文献   
23.
24.
25.
Using a lab-on-a-chip approach we demonstrate the possibility of selecting a single cell with certain properties and following its dynamics after an environmental stimulation in real time using Raman spectroscopy. This is accomplished by combining a micro Raman set-up with optical tweezers and a microfluidic system. The latter gives full control over the media surrounding the cell, and it consists of a pattern of channels and reservoirs defined by electron beam lithography that is moulded into rubber silicon (PDMS). Different buffers can be transported through the channels using electro-osmotic flow, while the resonance Raman response of an optically trapped red blood cell (RBC) is simultaneously registered. This makes it possible to monitor the oxygenation cycle of the cell in real time and to investigate effects like photo-induced chemistry caused by the illumination. The experimental set-up has high potential for in vivo monitoring of cellular drug response using a variety of spectroscopic probes.  相似文献   
26.
Summary. The possibility of using synaptic plasma membrane (SPM) enzymes Na+/K+-ATPase and Mg2+-ATPase, isolated from rat brain, as a biological component of multi-response sensing system for detection of different compounds (alkaline and heavy metal salts, organic compounds) was studied. The method is based on the spectrophotometric determination of inorganic ortho-phosphate (Pi) that serves as a measure of the enzymatic activity in the presence of various analytes. The concentration of Pi, liberated by enzyme catalysed hydrolysis of adenosinetriphosphate (ATP), was followed spectrophotometrically, by single exposure to analytes or in the mixture. Pi was dose dependent on the analyte concentration. Alkaline elements (Na, K, Mg), heavy metals (Pb, Cd, Hg, Cu, Fe, Co, Zn), toxic organic compounds (pyridine, urea, chlorpyrifos), and some drugs (digoxin, gitoxin) showed diverse effects, inducing the inhibition or stimulation of the enzymes activity. Development of simple test method for simultaneous detection of the investigated analytes based on the variation of medium assay composition was discussed.  相似文献   
27.
A new mesoporous silica structure with cubic Iad symmetry has been synthesized. The structure has very large unit cell dimensions, up to 250 A in the as-synthesized form and 222 A after calcination, and the surface area is around 700 m2/g. The syntheses were done according to well-established synthesis conditions with the triblock copolymers Pluronics P103 or P123, except for the addition of NaI to the synthesis mixture. Small-angle X-ray scattering revealed that the sample has Iad symmetry. According to electron micrographs, the structure is similar to that of MCM-48, and we thus propose that the structure lies on the gyroid minimal surface.  相似文献   
28.
The sorption kinetics for the removal aldehydes from aqueous solutions with Amberlite XAD-16 and MPP particles impregnated with Primene JM-T was investigated. A model, accounting for the simultaneous mass transfer and chemical reaction, is developed to describe the process. It is based on the analogy to the diffusion and reaction in a stagnant liquid sphere, but corrected for the porosity and particle properties influencing the diffusion. The developed model describes the kinetic behavior of the process in the low concentration region rather well. However, in the high concentration region, larger discrepancies are observed. Initially, the influence of the flow rate was investigated to eliminate the effect of the external mass transfer. The influence of the particle morphology was investigated for both physical and reactive sorption. Physical sorption experiments were used to determine the factor τ that takes the particle properties influencing the diffusion into account. It was shown that the diffusion is faster in XAD-16 than in MPP impregnated systems. Reaction rate constant k x was determined by fitting the model to the experimental data. Sorption of benzaldehyde appears to be significantly slower (k x ∼10−4 l/mol s) than the sorption of pentanal (k x ∼10−3 l/mol s) due to the slower chemical reaction. The influence of the particle size was investigated for the sorption of pentanal with XAD-16. It was observed that the particle size does influence the diffusion term, but does not have an effect on the reaction rate. On the other hand, the extractant loading influences the reaction rate slightly in the low concentration region, whereas the initial concentration of the solute has more pronounced effect.  相似文献   
29.
Reduced anionic flavin adenine dinucleotide (FADH?) is the critical cofactor in DNA photolyase (PL) for the repair of cyclobutane pyrimidine dimers (CPD) in UV‐damaged DNA. The initial step involves photoinduced electron transfer from *FADH? to the CPD. The adenine (Ade) moiety is nearly stacked with the flavin ring, an unusual conformation compared to other FAD‐dependent proteins. The role of this proximity has not been unequivocally elucidated. Some studies suggest that Ade is a radical intermediate, but others conclude that Ade modulates the electron transfer rate constant (kET) through superexchange. No study has succeeded in removing or modifying this Ade to test these hypotheses. Here, FAD analogs containing either an ethano‐ or etheno‐bridged Ade between the AN1 and AN6 atoms (e‐FAD and ε‐FAD, respectively) were used to reconstitute apo‐PL, giving e‐PL and ε‐PL respectively. The reconstitution yield of e‐PL was very poor, suggesting that the hydrophobicity of the ethano group prevented its uptake, while ε‐PL showed 50% reconstitution yield. The substrate binding constants for ε‐PL and rPL were identical. ε‐PL showed a 15% higher steady‐state repair yield compared to FAD‐reconstituted photolyase (rPL). The acceleration of repair in ε‐PL is discussed in terms of an ε‐Ade radical intermediate vs superexchange mechanism.  相似文献   
30.
ABSTRACT

Influence of nine different solvents, either alone or in a mixture, on the retention behavior of ziprasidone and its five impurities were examined by normal-phase thin-layer chromatography. Migration distances of the examined compounds obtained under the examined chromatographic conditions were correlated with calculated mobile phase properties, such as Snyder polarity and Hansen solubility. Linear or second-order polynomial relationships with high correlation coefficients were established between investigated variables. The obtained mathematical functions and statistical results indicated that selected mobile phase properties can be used for the prediction of the retention behavior of ziprasidone and its five impurities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号