首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   19篇
  国内免费   1篇
化学   293篇
晶体学   1篇
力学   4篇
数学   12篇
物理学   158篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   25篇
  2019年   15篇
  2018年   3篇
  2017年   3篇
  2016年   13篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   23篇
  2011年   28篇
  2010年   12篇
  2009年   15篇
  2008年   28篇
  2007年   22篇
  2006年   13篇
  2005年   19篇
  2004年   13篇
  2003年   8篇
  2002年   8篇
  2001年   15篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   9篇
  1994年   13篇
  1993年   9篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   7篇
  1974年   2篇
  1973年   5篇
  1967年   4篇
  1936年   2篇
  1888年   2篇
排序方式: 共有468条查询结果,搜索用时 31 毫秒
381.
Two laminar, premixed, fuel-rich flames fueled by anisole-oxygen-argon mixtures with the same cold gas velocity and pressure were investigated by molecular-beam mass spectrometry at two synchrotron sources where tunable vacuum-ultraviolet radiation enables isomer-resolved photoionization. Decomposition of the very weak O–CH3 bond in anisole (C6H5OCH3) by unimolecular decomposition yields the resonantly-stabilized phenoxy radical (C6H5O). This key intermediate species opens reaction routes to five-membered ring species, such as cyclopentadiene (C5H6) and cyclopentadienyl radicals (C5H5). Anisole is often discussed as model compound for lignin to study the phenolic-carbon structure in this natural polymer. Measured temperature profiles and mole fractions of many combustion intermediates give detailed information on the flame structure. A very comprehensive reaction mechanism from the literature which includes a sub-scheme for anisole combustion is used for species modeling. Species with the highest measured mole fractions (on the order of 10?3–10?2) are CH3, CH4, C2H2, C2H4, C2H6, CH2O, C5H5 (cyclopentadienyl radical), C5H6 (cyclopentadiene), C6H6 (benzene), C6H5OH (phenol), and C6H5CHO (benzaldehyde). Some are formed in the first destruction steps of anisole, e.g., phenol and benzaldehyde, and their formation will be discussed and with regard to the modeling results. There are three major routes for the fuel destruction: (1) formation of benzaldehyde (C6H5CHO), (2) formation of phenol (C6H5OH), and (3) unimolecular decomposition of anisole to phenoxy (C6H5O) and CH3 radicals. In the experiment, the phenoxy radical could be measured directly. The phenoxy radical decomposes via a bicyclic structure into the soot precursor C5H5 and CO. Formation of larger oxygenated species was observed in both flames. One of them is guaiacol (2-methoxyphenol), which decomposes into fulvenone. The presented speciation data, which contain more than 60 species mole fraction profiles of each flame, give insights into the combustion kinetics of anisole.  相似文献   
382.
383.
The covalent nature of the low-barrier N−H−N hydrogen bonds in the negative thermal expansion material H3[Co(CN)6] has been established by using a combination of X-ray and neutron diffraction electron density analysis and theoretical calculations. This finding explains why negative thermal expansion can occur in a material not commonly considered to be built from rigid linkers. The pertinent hydrogen atom is located symmetrically between two nitrogen atoms in a double-well potential with hydrogen above the barrier for proton transfer, thus forming a low-barrier hydrogen bond. Hydrogen is covalently bonded to the two nitrogen atoms, which is the first experimentally confirmed covalent hydrogen bond in a network structure. Source function calculations established that the present N−H−N hydrogen bond follows the trends observed for negatively charge-assisted hydrogen bonds and low-barrier hydrogen bonds previously established for O−H−O hydrogen bonds. The bonding between the cobalt and cyanide ligands was found to be a typical donor–acceptor bond involving a high-field ligand and a transition metal in a low-spin configuration.  相似文献   
384.
The UV spectra of Group 6 metal carbene complexes bearing a CpM(CO)3 (Cp=cyclopentadienyl) moiety bonded to the carbene carbon atom exhibit a redshift of the absorption maxima at higher wavelengths with respect to the parent monometallic complexes. This redshift is partly due to a higher occupation on the pz atomic orbital of the carbene carbon atom. Time‐dependent DFT calculations accurately assign this band to a metal‐to‐ligand charge‐transfer transition, thus showing that the presence of a second metal center does not affect the nature of the transition. However, the photochemical reactivity of Group 6 metal carbene complexes bearing a CpM(CO)3 moiety strongly depends on the nature of this metal fragment. A new photoslippage reaction leading to fulvenes occurs when Mn‐derived products 11 a , 11 b , and 12 a are irradiated (both Cr and W derivatives), whereas Re‐derived product 11 c behaves like standard Fischer complexes and yields the usual photocarbonylation products. A new photoreduction process occurring in the metallacyclopropanone intermediate is also observed for these complexes. Both computational and deuteration experiments support this unprecedented photoslippage process. The key to this differential photoreactivity seems to be the M–Cp back‐donation, which hampers the slippage process for Re derivatives and favors the carbonylation reaction.  相似文献   
385.
We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase χ'(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1 is found to be Δ(eff)/k(B)=19 K (τ(0)=5.0×10(-7) s; k(B)=Boltzmann constant), whereas only the onset (1.5 kHz, 1.8 K) of χ'(T) is observed for 2, thus indicating a higher blocking temperature for 1. The strong spin-orbit coupling present in Os(III) isolates the E'(1g(1/2))(O(h)*) Kramers doublet that exhibits orbital contributions to the single-ion anisotropy. Magnetic susceptibility and inelastic neutron-scattering measurements reveal that substitution of [Fe(CN)(6)](3-) by the [Os(CN)(6)](3-) anion results in larger ferromagnetic, anisotropic exchange interactions going from quasi-Ising exchange interactions in 2 to pure Ising exchange for 1 with J(parallel)(MnOs)=-30.6 cm(-1). The combination of diffuse magnetic orbitals and the Ising-type exchange interaction effectively contributes to a higher blocking temperature. This result is in accordance with theoretical predictions and paves the way for the design of a new generation of SMMs with enhanced SMM properties.  相似文献   
386.
387.
388.
We present a strategy for photolabile protection of terminal alkynes. Several photo-caged alcohols were synthesized via mild copper(II)-catalyzed substitution between tertiary propargylic alcohols and 2-nitrobenzyl alcohol to build up robust, base stable o-nitrobenzyl (NB) photo-cleavable compounds. We compare the new photolabile protecting group with the commonly used alkyne protecting group, 2-methyl-3-butyn-2-ol and the results show that NB ethers are stable under the cleaving conditions for the cleavage of methylbutynol protected alkynes. Additionally, we present the synthesis of photo-cleavable NB derivatives containing thiol groups that can serve as agents for photoinduced surface functionalization reactions.  相似文献   
389.
390.
Silicon-mediated fluoride abstraction is demonstrated as a means of generating the first fluorido-cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans-[MIVF4(CN)2]2− (M=Re, Os), obtained from their homoleptic [MIVF6]2− parents. As shown by combined high-field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans-[ReF4(CN)2]2− as compared to [ReF6]2−, reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building-blocks for the design of high-performance molecule-based magnetic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号