首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   28篇
数学   3篇
物理学   1篇
  2018年   1篇
  2017年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
The photolysis of ortho-azidophenol in water, ethanol, acetonitrile, chloroform, and benzene was studied by IR and electronic spectroscopy and thin-layer chromatography. It was found that an equilibrium between ortho-azidophenol and its quinonoid form occurred in benzene. In the photolysis of ortho-azidophenol in benzene, intramolecular hydrogen bonding facilitates the degradation of the azido group through the mechanism of formation of intermediate triazene structures. In the other solvents, which exclude intramolecular hydrogen bonding, the nitrene mechanism of photolysis yielding ortho-aminophenol, ortho-iminoquinone, and an azo compound is operative. The rate of formation of photolysis products depends on the nature of the solvent.  相似文献   
12.
We propose a novel approach for assessment of total antioxidant activity by monitoring kinetics of hydrogen peroxide (H2O2) scavenging after its injection into liquid sample under study. H2O2 is known to be the strongest oxidant, really presented in human body in contrast to the majority of the model oxidative systems used for evaluation of antioxidant activity. In addition, kinetic approach, being more informative than the commonly used determination of the final product, obviously provides better discrimination of potential antioxidants. Prussian Blue based sensor due to its high sensitivity and operational stability allowed to monitor kinetics of hydrogen peroxide consumption in turbid and colored samples. The pseudo-first order kinetic constants of hydrogen peroxide scavenging in the presence of different food additives correlated with total antioxidant activity of these samples evaluated via standard procedure based on lipid peroxidation. However, in contrast to the standard method, the proposed kinetic approach is expressed and does not require fresh biological tissues.  相似文献   
13.
Electroanalytical applications of Prussian Blue and its analogs   总被引:1,自引:0,他引:1  
The applications of transition metal hexacyanoferrates in electroanalysis are surveyed. Prussian Blue (ferric hexacyanoferrate) is recognized as the most promising low-potential transducer for hydrogen peroxide reduction among all known systems. The advantages of Prussian Blue over platinum or peroxidase electrodes for hydrogen peroxide detection are discussed. Various types of biosensors based on transition metal hexacyanoferrates and oxidase enzymes are considered. Amperometric biosensors based on Prussian Blue-modified electrodes allow the detection of glucose and glutamate down to 10–7 mol L–1 in the flow-injection mode. The future prospects of Prussian Blue-modified electrodes in analytical chemistry for the monitoring of chemical toxic agents, in clinical diagnostics, and in food control are outlined.  相似文献   
14.
Karyakin AA  Karyakina EE  Gorton L 《Talanta》1996,43(9):1597-1606
Optimisation of the electrodeposition of Prussian Blue onto mirrored glassy carbon electrodes yielded a modified electrode practically insensitive to oxygen reduction. At the same time the electrode activity towards hydrogen peroxide reduction was extremely high. This allowed the detection of hydrogen peroxide by electroreduction over a wide potential range. Flow-injection investigations of this electrode inserted into a flowthrough electrochemical cell of the confined wall-jet type showed that the response for hydrogen peroxide is limited by diffusion. Glucose and alcohol biosensors were made by immobilisation of glucose oxidase and alcohol oxidase respectively, within a Nafion layer, onto the top of the Prussian-Blue-modified electrodes. By increasing the density of Nafion and decreasing the measuring potential the glucose biosensor was made completely insensitive to both ascorbate and acetominophes.  相似文献   
15.
Hydrogen enzyme electrodes based on direct and mediated bioelectrocatalysis were developed. Direct bioelectrocatalysis of hydrogen oxidation/evolution was observed for hydrogenase adsorbed on carbon filament material. The equilibrium hydrogen potential was achieved on mediatorless hydrogen enzyme electrodes in hydrogen atmosphere. The electrocatalytic activity of hydrogenase in direct bioelectrocatalysis of hydrogen oxidation was two orders of magnitude higher compared to platinum. The reported electrode remained 50% activity after 6 months of storage with periodical testing. Wired bioelectrocatalysis was achieved by adsorption of hydrogenase onto electropolymerized redox mediator N-methyl-N'-(12-pyrrol-1-yl-dodecyl)-4,4'-bipyridinium ditetrafluoroborate.  相似文献   
16.
17.
Electropolymerization of aminophenylboronic acids proceeds by the mechanism typical of conducting polyaniline, if the substituent in the ring is the electron donor and its position favors the electrophilic substitution into the para position with respect to the amino group in the ring. For the same reason, the polymerization of meta-aminophenylboronic acid requires the presence of fluoride ions to transform the weak electron acceptor, boronic acid group into the electron-donating trifluoroborate anion. It is shown that electropolymerization of ortho-aminophenylboronic acid can be carried out in strongly acidic media in the absence of fluoride ions, in analogy to unsubstituted polyaniline. The conductivity of the resulting polyanilineboronic acids synthesized under optimal conditions increases upon their binding with sugars and oxyacids, which allows detecting the specific interactions only, while the nonspecific interactions lower down the polymer conductivity.  相似文献   
18.
19.
The photolysis of o-azidobenzoic acid in solutions, adsorbed on silica gel, and in a crystalline state was studied by IR and UV spectroscopy and thin-layer chromatography. It was found that the photolysis resulted in the formation of 2,1-benzisoxazolone (the product of intramolecular cyclization of singlet nitrenes) and anthranilic acid and o,o"-dicarboxyazobenzene (the reaction products of triplet nitrenes). The formation of 2,1-benzisoxazolone is a reversible reaction because of the secondary photolysis to singlet nitrenes, which leads to an increase in their concentration in the system.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号