首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   11篇
化学   55篇
力学   4篇
数学   4篇
物理学   26篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2016年   6篇
  2015年   10篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有89条查询结果,搜索用时 343 毫秒
41.
The Me‐cAAC:‐stabilized dimer of silicon disulfide (SiS2) has been isolated in the molecular form as (Me‐cAAC:)2Si2S4 ( 2 ) at room temperature [Me‐cAAC:=cyclic alkyl(amino) carbene]. Compound 2 has been synthesized from the reaction of (Me‐cAAC:)2Si2 with elemental sulfur in a 1:4 molar ratio under oxidative addition. This is the smallest molecular unit of silicon disulfide characterized by X‐ray crystallography, electron ionization mass spectrometry, and NMR spectroscopy. Structures with three sulfur atoms arranged around a silicon atom are known; however, 2 is the first structurally characterized silicon–sulfur compound containing one terminal and two bridging sulfur atoms at each silicon atom. Compound 2 shows no decomposition after storing for three months in an inert atmosphere at ambient temperature. The bonding of 2 has been further studied by theoretical calculations.  相似文献   
42.
Silicondiselenide is a semiconductor and exists as an insoluble polymer (SiSe2)n which is prepared by reacting elemental silicon with selenium powder in the temperature range of 400–850 °C. Herein, we report on the synthesis, isolation, and characterization of carbene stabilized molecular silicondiselenide in the form of (cAAC)2Si2Se4 (3) [cAAC = cyclic alkyl(amino)carbene]. 3 is synthesized via reaction of diatomic silicon(0) compound (cAAC)2Si2 (2) with black selenium powder at –78 °C to room temperature. The intensely orange colored compound 3 is soluble in polar organic solvents and stable at room temperature for a month under an inert atmosphere. 3 decomposes above 245 °C. The molecular structure of 3 has been confirmed by X-ray single crystal diffraction. It is also characterized by UV-vis, IR, Raman spectroscopy and mass spectrometry. The stability, bonding, and electron density distributions of 3 have been studied by theoretical calculations.  相似文献   
43.
A rare Mn9 micro3-oxo-centered mixed-valent cluster [Mn9O7(O2CPh)11(thmn)(py)2 (H2O)3] (1) is prepared by assembling an oxo-centered MnIIMnIII2 triangle, [Mn3O(O2CPh)6(py)2(H2O)].0.5MeCN, as the secondary building unit in the presence of a tripodal alcohol, 1,1,1-tris(hydroxymethyl)nitromethane (H3thmn), as the capping ligand. Complex 1 was formed along with a minor byproduct, [Mn6O2(O2CPh)10(MeCN)4] (2). Complex 1 was characterized by X-ray single-crystal structure analysis and was crystallized in a monoclinic system, space group P2(1)/n, a=16.214(6) A, b=25.874(10) A, c=26.497(10) A, and beta=94.214(7) degrees. The Manganese-oxo-carboxylate core in 1 looks like a funnel. Variable-temperature magnetic studies down to 2 K reveal the existence of dominant ferromagnetic interaction within the cluster. Alternating current susceptibility data of the cluster show strong frequency dependence of both the real and imaginary parts of susceptibility chi' and chi' below 5 K. Moreover, the calculated relaxation time, tau0=1.2x10(-7) s, and the energy barrier, DeltaE=25 K, are consistent with the single-molecule magnetic behavior of 1.  相似文献   
44.
In this work, the X2B1 and A2A1 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited A2A1 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (upsilon1upsilon2upsilon3) vibrationally excited levels of the ground electronic state, with upsilon1 < or = 2, upsilon2 < or = 6, and upsilon3 = 0, have been observed. Ab initio potential-energy surfaces for the X2B1 and A2A1 electronic states have been calculated at 210 points. These two states correlate with a 2Pi(u) state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the A2A1 --> X2B1 emission band system have been calculated in order to corroborate the experimental assignments.  相似文献   
45.
We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase 1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647–674, 2000) to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem (a quadratic program); and decomposed and distributed subproblems (smaller SDPs) in a parallel and distributed high performance computing environment. We compare our MPI (Message Passing Interface) implementation of the decomposition algorithm on the distributed Henry2 cluster with the OpenMP version of CSDP (Borchers and Young in Comput. Optim. Appl. 37:355–369, 2007) on the IBM Power5 shared memory system at NC State University. Our computational results indicate that the decomposition algorithm (a) solves large SDPs to 2–3 digits of accuracy where CSDP runs out of memory; (b) returns competitive solution times with the OpenMP version of CSDP, and (c) attains a good parallel scalability. Comparing our results with Fujisawa et al. (Optim. Methods Softw. 21:17–39, 2006), we also show that a suitable modification of the matrix completion scheme can be used in the solution of larger SDPs than was previously possible.  相似文献   
46.
47.
The magnetic behavior of binary compound CeIn(2) has been reported to be unusual in the sense that this compound appears to exhibit a first-order ferromagnetic transition at a rather high temperature of (T(C)=)22 K, which is not so common for Ce systems. In order to throw more light on the magnetic behavior of this compound, we have carried out detailed magnetization, and electrical resistivity studies as a function of temperature, magnetic field and external pressure, in addition to heat-capacity measurements. The plots of H/M versus M(2) at low fields are interestingly characterized by negative slopes, not only near T(C), but also at lower temperatures, a source of which could be attributed to magnetic-field-induced transitions at much lower temperatures. The sign of magnetoresistance tends to change from positive to negative with increasing temperature, as though there is a gradual change in the magnetic character. Finally, the magnetic ordering temperature increases with increasing pressure (until 20 kbar), as though this compound lies at the left-hand side of the peak in Doniach’s magnetic phase diagram.  相似文献   
48.
49.
Journal of Thermal Analysis and Calorimetry - Combining energy recovery and renewable energy technologies for energy harvesting systems is a real challenge. In the present study, an innovative new...  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号