首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   28篇
化学   192篇
晶体学   2篇
力学   4篇
数学   25篇
物理学   53篇
  2024年   2篇
  2023年   4篇
  2022年   8篇
  2021年   5篇
  2020年   10篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   16篇
  2015年   22篇
  2014年   12篇
  2013年   12篇
  2012年   33篇
  2011年   16篇
  2010年   7篇
  2009年   12篇
  2008年   7篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   13篇
  2003年   6篇
  2002年   6篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
41.
Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.  相似文献   
42.
To investigate the preferential complexing behavior of isomeric xylenes, syndiotactic polystyrene (sPS) membranes are prepared using varying compositions of m‐ and p‐xylene. Complex formation between sPS and the xylenes was studied by means of thermogravimetric and FT‐IR analyses to determine the exact amounts of solvent molecules present per styrene repeating unit. A preferential complexing ability of p‐xylene was revealed due to its favorable interaction with sPS.  相似文献   
43.
The centrosymmetric O—H⋯O‐bonded head‐to‐head dimers of the title compound, C21H22O6, are linked together via bifurcated C—H⋯O inter­actions along the a axis and via favourable C—H⋯π inter­actions along the b axis in the crystal structure.  相似文献   
44.
We demonstrate selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. 1,2,3-Triazole formation between terminal acetylenes and organic azides is efficiently catalyzed by copper(I) complexes (a Sharpless "click" reaction), while the oxidized copper(II) complexes are inactive. By electrochemically activating or deactivating the catalyst by switching its redox state, we demonstrate control over triazole formation between surface-immobilized azides and ethynylferrocene. The reaction proceeds on the time scale of minutes using submicromolar concentration of reactants and catalyst, requires mild potentials for catalyst activation and deactivation, and works in aqueous and mixed aqueous-organic solvents. By appropriate biasing of each electrode, we selectively modify one of two chemically identical 10-mum-wide electrodes separated by 10 mum in an interdigitated array. The ability to switch on or off the reaction by electrical addressing together with the chemoselectivity of this reaction makes Cu(I)-catalyzed triazole formation an ideal method for the chemical modification of multielectrode arrays.  相似文献   
45.
A high effective electron mobility of 33 cm2 V–1 s–1 was achieved in solution‐processed undoped zinc oxide (ZnO) thin films. The introduction of silicon nitride (Si3N4) as growth substrate resulted in a mobility improvement by a factor of 2.5 with respect to the commonly used silicon oxide (SiO2). The solution‐processed ZnO thin films grown on Si3N4, prepared by low‐pressure chemical vapor deposition, revealed bigger grain sizes, lower strain and better crystalline quality in comparison to the films grown on thermal SiO2. These results show that the nucleation and growth mechanisms of solution‐processed films are substrate dependent and affect the final film structure accordingly. The substantial difference in electron mobilities suggests that, in addition to the grain morphology and crystalline structure effects, defect chemistry is a contributing factor that also depends on the particular substrate. In this respect, interface trap densities measured in high‐κ HfO2/ZnO MOSCAPs were about ten times lower in those fabricated on Si3N4 substrates. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)

  相似文献   

46.
In situ Transmission Electron Microscopy (TEM) techniques can potentially fill in gaps in the current understanding interfacial phenomena in complex oxides. Select multiferroic oxide materials, such as BiFeO(3) (BFO), exhibit ferroelectric and magnetic order, and the two order parameters are coupled through a quantum-mechanical exchange interaction. The magneto-electric coupling in BFO allows control of the ferroelectric and magnetic domain structures via applied electric fields. Because of these unique properties, BFO and other magneto-electric multiferroics constitute a promising class of materials for incorporation into devices such as high-density ferroelectric and magnetoresistive memories, spin valves, and magnetic field sensors. The magneto-electric coupling in BFO is mediated by volatile ferroelastically switched domains that make it difficult to incorporate this material into devices. To facilitate device integration, an understanding of the microstructural factors that affect ferroelastic relaxation and ferroelectric domain switching must be developed. In this article, a method of viewing ferroelectric (and ferroelastic) domain dynamics using in situ biasing in TEM is presented. The evolution of ferroelastically switched ferroelectric domains in BFO thin films during many switching cycles is investigated. Evidence of partial domain nucleation, propagation, and switching even at applied electric fields below the estimated coercive field is revealed. Our observations indicate that the occurrence of ferroelastic relaxation in switched domains and the stability of these domains is influenced the applied field as well as the BFO microstructure. These biasing experiments provide a real time view of the complex dynamics of domain switching and complement scanning probe techniques. Quantitative information about domain switching under bias in ferroelectric and multiferroic materials can be extracted from in situ TEM to provide a predictive tool for future device development.  相似文献   
47.
We report on the contribution of 90° ferroelastic domain walls in strain-engineered PbZr(0.2)Ti(0.8)O(3) thin films to the room-temperature permittivity. Using a combination of phenomenological Ginzburg-Landau-Devonshire polydomain thin-film models and epitaxial thin-film growth and characterization, the extrinsic or domain wall contribution to the low-field, reversible dielectric response is evaluated as a function of increasing domain wall density. Using epitaxial thin-film strain we have engineered a set of samples that possess a known quantity of 90° domain walls that act as a model system with which to probe the contribution from these ferroelastic domain walls. We observe a strong enhancement of the permittivity with increasing domain wall density that matches the predictions of the phenomenological models. Additionally, we report experimentally measured bounds to domain wall stiffness in such PbZr(0.2)Ti(0.8)O(3) thin films as a function of domain wall density and frequency.  相似文献   
48.
We report the syntheses of vertically aligned, beaded zinc germinate (Zn2GeO4)/zinc oxide (ZnO) hybrid nanowire arrays via a catalyst-free approach. Vertically aligned ZnO nanowire is used as a lattice matching reactive template for the growth of Zn2GeO4/ZnO nanowire. The morphology and structure of the as-prepared samples were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). TEM studies revealed the beaded microstructures of the Zn2GeO4/ZnO nanowire. The thickness and microstructures of crystalline beads could be easily controlled by tuning the growth duration and temperature. The photoluminescence spectrum of the Zn2GeO4/ZnO nanowires is composed of two peaks, i.e., the ultraviolet (UV) peak and the defect peak. For longer treatment duration of the samples, both the UV and defect peak intensities decrease dramatically. One application of the as-prepared Zn2GeO4/ZnO nanowire is to use the nanowire as template for the growth of three-dimensionally (3D) aligned, high-density ZnO nanobranches en route to hierarchical structure. The study of field emission properties of the as-prepared samples revealed the low turn-on voltage and high current density electron emission from the 3D ZnO nanobranches as compared to the ZnO nanowires and Zn2GeO4/ZnO nanowires. Furthermore, the electrical transport behavior of single hybrid nanowire device indicates the formation of back-to-back Schottky barriers (SBs) formation at the contacts and its application in white-light response has been demonstrated.  相似文献   
49.
Solid-state rheometry and model compound reactions are used to investigate free radical reactions of N-arylmaleimide coagents with saturated and unsaturated polymers. N,N′-m-phenylene dimaleimide (BMI) is shown to provide superior cross-link densities over diacrylate and diallyl coagents for all of the polymers studied, including linear low density polyethylene (LLDPE), poly(ethylene oxide) (PEO), cis-poly(butadiene) (PBD) and cis-poly(isoprene) (PIP). Studies of the N-phenylmaleimide (NPM) + cis-cyclooctane system show that C–H bond addition to yield N-aryl-2-alkylsuccimide grafts is the predominant reaction pathway, as opposed to maleimide homopolymerization. In contrast, peroxide-initiated reactions of cis-cyclooctene with small NPM concentrations generate highly alternating poly(cycloctene-alt-N-phenylmaleimide) in high yield, indicating that unsaturated mers in materials such as PBD engage maleimides in an efficient alternating copolymerization between electron-rich and electron-deficient monomer pairs. Factors that affect the reactivity of different polymers in these C–H bond additions and alternating copolymerizations are discussed.  相似文献   
50.
Ceramides are known to be involved in various biological processes with their physiological levels elevated in various disease conditions such as diabetes, Alzheimer's, atherosclerosis. To facilitate the rapid screening of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 inhibition in HepG2 cells, a RapidFire coupled to tandem mass spectrometry (RF–MS/MS) method has been developed. The RF platform provides an automated solid-phase extraction system that gave a throughput of 12.6 s per sample to an MS/MS system using electrospray ionization under the positive ion mode. Chromatographic separation of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 was achieved using a ternary gradient on C8 type E cartridge. The MS/MS ion transitions monitored were 538.2 → 264.2, 650.7 → 264.2, 648.6 → 264.2, 566.4 → 264.2, 510.4 → 264.2, 594.4 → 264.2, 622.5 → 264.2, and 552.3 → 250.2 for Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, d18:1/22:0, and the internal standard (Cer d17:1/18:0), respectively. The RF–MS/MS methodology showed an excellent performance with an average Z′ value of 0.5–0.7. This is the first report of an RF–MS/MS assay for screening of ceramides which is amenable for high-throughput screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号