首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73574篇
  免费   9120篇
  国内免费   1663篇
化学   66772篇
晶体学   601篇
力学   1149篇
综合类   1篇
数学   8600篇
物理学   7234篇
  2023年   182篇
  2022年   344篇
  2021年   600篇
  2020年   1818篇
  2019年   3126篇
  2018年   1403篇
  2017年   1026篇
  2016年   4245篇
  2015年   4246篇
  2014年   4342篇
  2013年   5686篇
  2012年   5029篇
  2011年   4606篇
  2010年   4097篇
  2009年   3932篇
  2008年   4645篇
  2007年   3864篇
  2006年   3585篇
  2005年   3672篇
  2004年   3157篇
  2003年   2729篇
  2002年   3347篇
  2001年   1842篇
  2000年   1714篇
  1999年   790篇
  1998年   473篇
  1997年   507篇
  1996年   513篇
  1995年   381篇
  1994年   419篇
  1993年   387篇
  1992年   371篇
  1991年   328篇
  1990年   312篇
  1989年   248篇
  1988年   276篇
  1987年   276篇
  1986年   217篇
  1985年   470篇
  1984年   385篇
  1983年   339篇
  1982年   409篇
  1981年   338篇
  1980年   340篇
  1979年   301篇
  1978年   292篇
  1977年   267篇
  1976年   284篇
  1975年   257篇
  1974年   212篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Vacuum fluctuations of the electromagnetic field induce current fluctuations in resistively shunted Josephson junctions that are measurable in terms of a physically relevant power spectrum. In this paper we investigate under which conditions vacuum fluctuations can be gravitationally active, thus contributing to the dark energy density of the universe. Our central hypothesis is that vacuum fluctuations are gravitationally active if and only if they are measurable   in terms of a physical power spectrum in a suitable macroscopic or mesoscopic detector. This hypothesis is consistent with the observed dark energy density in the universe and offers a resolution of the cosmological constant problem. Using this hypothesis we show that the observable vacuum energy density ρvacρvac in the universe is related to the largest possible critical temperature TcTc of superconductors through ρvac=σ·(kTc)4/?3c3ρvac=σ·(kTc)4/?3c3, where σσ is a small constant of the order 10-310-3. This relation can be regarded as an analog of the Stefan–Boltzmann law for dark energy. Our hypothesis is testable in Josephson junctions where we predict there should be a cutoff in the measured spectrum at 1.7 THz if the hypothesis is true.  相似文献   
992.
We report a quantitative Grazing Incidence Small Angle X‐ray Scattering (GISAXS) study of a dense film of mutually oriented carbon nanotubes (CNTs) grown by a catalytically‐activated DC HF CCVD process after dispersion of metallic catalytic (Co) islands on SiO2/Si(100) substrates. The GISAXS pattern analysis is expanded to non‐correlated surface science systems and is based on CNTs density, characteristic lengths, atomic Co dispersion throughout the CNTs and roughnesses of uncorrelated particles. The results are closely compared to SEM and TEM observations. The GISAXS patterns, even dominated by envelope features of disordered objects, provide significant complementary quantitative data about CNTs films. The results underline that cobalt continuously fills the nanotube in the course of the growth and that the CNTs experience a large tendency toward mutual alignment. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
993.
We study the asymptotic behavior of the conserved densities deduced form the Lagrangian corresponding to the nonlinear two-dimensional Euler equations describing nonviscous incompressible fluid flows on a three-dimensional rotating spherical surface superimposed by a particular stationary latitude dependent flow. Under the assumption of no friction and a distribution of temperature dependent only upon latitude, the equations in question can be used to model zonal west-to-east flows in the upper atmosphere between the Ferrel and Polar cells. The conserved densities were analyzed and visualized by using the exact invariant solutions associated with the given model for the particular form of finite disturbances for which the invariant solutions are also exact solutions of Navier-Stokes equations.  相似文献   
994.
We have observed reactive scattering damage to fundamental DNA building blocks by the type of hyperthermal secondary ions that are produced along heavy ion tracks in biological media. Reactions include carbon abstraction by N+, and hydrogen abstraction by O- and N+, at collision energies down to 1 eV. Our results show that localized reactive scattering by hyperthermal secondary fragments can lead to important physicochemical damage to DNA in cells irradiated by heavy ions. This suggests a fundamentally different picture of nascent DNA damage induced by heavy ion tracks, compared to conventional (x or gamma) radiation tracks.  相似文献   
995.
996.
997.
It is demonstrated that colloidal magnetite nanoparticles can be used as nanosorbents for lanthanide ions dissolved in water. In particular, a series of experiments are performed for the removal of Eu(III) in distinct analytical conditions and by applying an external magnet to collect the sorbents previously dispersed in water samples. Furthermore, strategies for surface chemistry functionalization are also investigated, aiming to investigate the effect of this parameter on the removal capacity of the Fe3O4 nanoparticles. The supernatant solutions are monitored for the remaining amount of Eu(III) by fluorescence emission measurements in the presence of 2,6‐pyridinedicarboxylic acid as a sensitizer. The results demonstrate that neat Fe3O4 nanoparticles are capable of capturing lanthanide ions (III) from aqueous solutions (pH 7), without need of surface modification, and for subsequent removal by magnetic separation. During the removal, efficiency is increased after modifying the particles' surfaces with silica and 3‐aminopropyltrimethoxysilane; in alkaline medium (pH 10), there is complete removal regardless the type of nanosorbent used. This has been explained by the formation of insoluble Eu(III) species that adsorb strongly to the nanosorbents surfaces allowing their subsequent magnetic separation.  相似文献   
998.
We demonstrate that the recolliding electron wave packet, fundamental to many strong field phenomena, can be directly imaged with sub-A spatial and attosecond temporal resolution using attosecond extreme ultraviolet (XUV) pulses. When the recolliding electron revisits the parent ion, it can absorb an XUV photon yielding high energy electron and thereby providing a measurement of the electron energy at the moment of recollision. The full temporal evolution of the recollision wave packet can be reconstructed by measuring the photoelectron spectra for different time delays between the driving laser and the attosecond XUV probe. The strength of the photoelectron signal can be used to characterize the spatial distribution of the electron density in the longitudinal direction. Elliptical polarization can be used to characterize the electron probability in transversal direction.  相似文献   
999.
We demonstrate that many collective phenomena in multi-cellular systems can be explained by models in which cells, despite their complexity, are represented as simple particles which are parameterized mainly by their physical properties. We mainly focus on two examples that nevertheless span a wide range of biological sub-disciplines: Unstructured cell populations growing in cell culture and growing cell layers in early animal development. While cultured unstructured cell populations would apriori been classified as particularly suited for a biophysical approach since the degree to which they are committed to a genetic program is expected to be modest, early animal development would be expected to mark the other extreme—here the degree of determinism according to a genetic program would be expected to be very high. We consider a number of phenomena such as the growth kinetics and spatial structure formation of monolayers and multicellular spheroids, the effect of the presence of another cell type surrounding the growing cell population, the effect of mutations and the critical surface dynamics of monolayers. Different from unstructured cell populations, cells in early development and at tissue interfaces usually form highly organized structures. An example are tissue layers. Under certain circumstances such layers are observed to fold. We show that folding pattern again can largely be explained by physical mechanisms either by a buckling instability or active cell shape changes. The paper combines new and published material and aims at an overview of a wide range of physical aspects in unstructured populations and growing tissue layers.  相似文献   
1000.
Laser flash photolysis of ketene at 308 nm, coupled with H atom vacuum ultraviolet laser induced fluorescence, was used to determine the branching ratio for the CH3 + H channel (1a) in the reaction of CH21A1 (1CH2) with H2, over the temperature range 300–500 K. This reaction channel competes with collision induced intersystem crossing (CIISC) to form triplet methylene, CH23B1 (3CH2) (channel 1b). The branching ratio for H formation, k1a/k1, was determined by measuring the relative H atom yield in three time resolved measurements of H: (i) in ketene, H2 mixtures, where H is exclusively formed by reaction 1a, (ii) in ketene, H2, NO mixtures ([NO] [H2]), where H is formed at short times by 1a and at longer times by 3CH2 + NO, following 1b, and (iii) in ketene, He, NO mixtures ([NO] [He]), where H is exclusively formed from 3CH2 + NO, following deactivation of singlet to triplet methylene by He. k1a/k1 was found to increase from 0.85 at 300 K to unity at 500 K, with the yield of CIISC decreasing from 0.15 to zero. This is the first measurement of the temperature dependence of the rate coefficient for CIISC in a reactive system. The rate coefficient for CIISC with an inert gas increases with T. It has been suggested that the fractional yield of CIISC will increase with temperature in reactive systems, thus reducing the rate coefficient for reaction at high temperature, with significant consequences for combustion systems. The present experiments demonstrate that this is not the case for reaction with H2 and implies a different CIISC mechanism for reactive vs inert collision partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号