首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2044篇
  免费   22篇
  国内免费   7篇
化学   1500篇
晶体学   21篇
力学   28篇
数学   265篇
物理学   259篇
  2024年   6篇
  2023年   12篇
  2022年   33篇
  2021年   42篇
  2020年   48篇
  2019年   37篇
  2018年   29篇
  2017年   25篇
  2016年   50篇
  2015年   50篇
  2014年   71篇
  2013年   101篇
  2012年   129篇
  2011年   136篇
  2010年   88篇
  2009年   55篇
  2008年   127篇
  2007年   164篇
  2006年   108篇
  2005年   131篇
  2004年   101篇
  2003年   100篇
  2002年   80篇
  2001年   28篇
  2000年   19篇
  1999年   28篇
  1998年   16篇
  1997年   28篇
  1996年   32篇
  1995年   17篇
  1994年   18篇
  1993年   16篇
  1992年   15篇
  1991年   12篇
  1990年   12篇
  1989年   11篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   15篇
  1984年   7篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   8篇
  1979年   10篇
  1976年   6篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有2073条查询结果,搜索用时 0 毫秒
31.
    
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   
32.
33.
Acid labile sugar based hydrogels have been synthesized using a commercially available acid sensitive cross-linker, 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5,5]-undecane. The monomers used for polymerization are N-isopropylacrylamide (NIPAM) and d-gluconamidoethyl methacrylate (GAMA), which when polymerized in the presence of the acid labile cross-linker yield hydrogels that can swell and degrade under acidic conditions, making them ideal for drug delivery. The hydrogels are synthesized using either a photo-initiator, Irgacure-2959 or a conventional initiator, potassium persulfate. The hydrogels obtained by photo-polymerization exhibit defined and unique microstructures, when analyzed by scanning electron microscopy (SEM). The swelling capacity and protein release from the hydrogels as a function of pH is studied. The protein release from the hydrogels is found to be dependent upon the degree of cross-linking and the pH of the environment.  相似文献   
34.
Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the CuI‐catalyzed alkyne–azide cycloaddition and its strain‐promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site‐specific manner and recognized by antibody binding to demonstrate the proof‐of‐concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.  相似文献   
35.
Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be observed. Some transformation products detected through the use of high performance liquid chromatography–electrospray mass spectrometry are consistent with the formation of N-chloro atrazine. The effects of applied chlorine, pH, and reaction time on the transformation reaction were studied to help understand the practical implications of the transformation on the accurate determination of atrazine in drinking waters. The errors in the determination of atrazine are a function of the type of dechlorinating agent applied during sample preparation and the analytical instrumentation utilized. When a reductive dechlorinating agent, such as sodium sulfite or ascorbic acid is used, the quantification of the atrazine can be inaccurate, ranging from 2-fold at pH 7.5 to 30-fold at pH 6.0. The results suggest HPLC/UV and ammonium chloride quenching may be best for accurate quantification. Hence, the results also appear to have implications for both compliance monitoring and health effects studies that utilize gas chromatography analysis with sodium sulfite or ascorbic acid as the quenching agent.  相似文献   
36.
A new, twofold interpenetrated metal–organic framework (MOF) material has been synthesized that demonstrates dramatic steps in the adsorption and hysteresis in the desorption of CO2. Measurement of the structure by powder X‐ray diffraction (PXRD) and pair distribution function (PDF) analysis indicates that structural changes upon CO2 sorption most likely involve the interpenetrated frameworks moving with respect to each other.  相似文献   
37.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   
38.
39.
Formation of singlet charge transfer (heteroexcimer) states in the course of the fluorescence quenching of lumiflavin and riboflavin tetrabutyrate by indole and N-methylindole have been directly observed by means of time-resolved absorption spectral measurements using a picosecond laser photolysis method. Similar transient spectra have been observed also in the case of a flavoenzyme, D-amino acid oxidase.  相似文献   
40.
    
Trace metals are required in the body as they play a significant role in several biochemical processes. Moreover, certain heavy metals are beneficial at appropriate levels. Copper (Cu), for example, is essential for red blood cell formation, bone strength, and infant growth. Despite these fundamental roles, Cu can become toxic at high levels. Other heavy metals such as lead (Pb), cadmium (Cd), manganese (Mn), and mercury (Hg), have been identified to cause acute and chronic health complications. For these reasons, rapid, real-time quantification of such metals in biological media is of interest to improving human health outcomes. Electrochemical methods offer numerous advantages, such as portability, capability to be miniaturized, low cost, and ease-of-use. In this review, we examine recent developments in electrochemical sensing for the detection of heavy metals in biological media. To meet the requirements for inclusion in this review, the electrochemical sensor must have been evaluated in biological media (blood, serum, sweat, saliva, urine, brain tissue/cells). Several applications are explored to examine recent advancements in electrochemical sensing within these matrices. Addressing the challenges through materials, device, and system innovations, it is expected that electrochemical sensing of heavy metals in biological media will facilitate future diagnoses and treatments in healthcare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号