This paper reports numerical study for peristalsis of Carreau–Yasuda nanofluid in a symmetric channel. Constant magnetic field is applied. Modified Darcy’s law and nonlinear thermal radiation effects are considered. Viscous dissipation and Ohmic heating effects are also present. Long wavelength and small Reynolds number are considered. Resulting nonlinear problems are solved numerically. Graphical illustrations depict that temperature increases for larger Hartmann number and it decays for thermophoresis parameter.
Darcy–Forchheimer three-dimensional rotating flow of nanoliquid in the presence of activation energy and heat generation/absorption is examined. Heat and mass transport via convective process is considered. Buongiorno model has been employed to illustrate thermophoresis and Brownian diffusion effects. Adequate transformation procedure gives rise to system in terms of nonlinear ODE’s. An efficient numerical technique namely NDsolve is used to tackle the governing nonlinear system. The graphical illustrations examine the outcomes of various sundry variables. Heat and mass transfer rates are also computed and examined. Our results indicate that the temperature and concentration distributions are enhanced for larger values of porosity parameter and Forchheimer number.
Journal of Thermal Analysis and Calorimetry - Flow boiling heat transfer widely utilized in numerous industrial applications such as boiler tubes, evaporators and cooling of reactors in a nuclear... 相似文献
The promising biomedical applications of silver complexes stimulated the researchers to test these compounds against cancer. The present research work was designed to achieve this goal. In this work, a series of 5-methyl benzimidazole based N-Heterocyclic carbene ligands and respective silver(I) complexes were synthesized and tested on cancer cell lines to assess their anticancer activity. Unsymmetrically substituted benzimidazole was found unique in its reactivity and generation of a single product during NHC ligand formation was only possible after two successive alkylations with same alkyl halide. The corresponding Ag(I)-NHC adducts were obtained by in situ deprotonation of the NHC ligands. Synthesized compounds were characterized by various physcio-chemical and spectroscopic methods. Single crystal X-ray diffraction study of complex 7 revealed its mononuclear structure. Preliminary in vitro anticancer study of azolium salts and respective Ag(I)-NHC complexes against human breast cancer (MDA-MB-231), colon cancer (HCT-116) and normal endothelial cells (EA.hy926) cells revealed that all the compounds are more cytotoxic to cancer cells than normal cells and the complexes are relatively more potent compared to the corresponding NHC ligands. It was found that increased chain length and presence of methyl substituent on benzimidazole ring enhance the biopotency of Ag(I)-NHC complexes. The synthesized compounds were further studied for pro-apoptotic mechanism of action via Rhodamine 123 test. The tested compounds were found to induce apoptosis via extrinsic mitochondrial pathway. 相似文献
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3. 相似文献
The dynamics of electronically excited states in 2-picoline is studied using femtosecond time-resolved photoelectron imaging spectroscopy. The internal conversion from the S(2) state to the vibrationally excited S(1) state is observed in real time. The secondarily populated high vibronic S(1) state deactivates further to the S(0) state. Photoelectron energy and angular distributions reveal the feature of ionization from the singlet 3p Rydberg states. In addition, variation of time-dependent anisotropy parameters indicates the rotational coherence of the molecule. 相似文献
The first report on the fabrication and application of a nanocomposite containing poly-N-vinyl carbazole (PVK) polymer and graphene oxide (GO) as an antimicrobial film was demonstrated. The antimicrobial film was 90% more effective in preventing bacterial colonization relative to the unmodified surface. More importantly, the nanocomposite thin film showed higher bacterial toxicity than pure GO-modified surface. 相似文献
A novel (N6O4) macrocyclic ligand (L) and its Cu(II) complexes have been prepared and characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and conductivity measurements. Quantum chemical calculations have also been carried out at B3LYP/6-31+G(d,p) to study the structure of the ligand and one of its complexes. The results show a novel macrocyclic ligand with potential amide oxygen atom, amide and amine nitrogen atoms available for coordination. Distorted square pyramidal ([Cu(L)Cl]Cl·2.5H2O (1), [Cu(L)NO3]NO(3)·3.5H2O (2), and [Cu(L)Br]Br·3H2O (4) and octahedral ([Cu(L)(OAc)2]·5H2O (3)) geometries were proposed. The EPR data of 1, 2, and 4 indicate d1x2(-y)2 ground state of Cu(II) ion with a considerable exchange interaction. The measured cytotoxicity for L and its complexes (1, 2) against three tumor cell lines showed that coordination improves the antitumor activity of the ligand; IC50 for breast cancer cells are ≈8.5, 3, and 4 μg/mL for L and complexes (1) and (2), respectively. 相似文献
Exploratory oxidative cyclization studies on cyclopentanelated and cyclohexenelated oroidin derivatives utilized Pummerer chemistry to generate pentacyclic structures related to the palau'amine family of sponge metabolites. Stereochemical issues were paramount, and appropriate choice of annelated ring size led to formation of the pentacyclic framework with complete diastereoselectivity for all of the core bonds. 相似文献
A rapid, simple, and sensitive capillary electrophoresis (CE) method was developed and validated for the simultaneous determination of amlodipine (AML) and valsartan (VAL) in pharmaceuticals and human plasma using a UV photodiode array detector. Electrophoretic conditions were optimized to improve separation, sensitivity, and rapidity. The optimal conditions were 25 mM phosphate buffer at pH 8.0, injection time 10.0 s, voltage 25 kV, and column temperature 25 degrees C, with detection at 214 nm. The method was found to be linear in the range of 1.0-35 and 1.0-350 mg/L, with weighted regression 0.9999 and 0.9994, for AML and VAL, respectively. Validation of the method showed acceptable intraday and interday accuracy (85.5-95.3%) and precision (RSD 1.64-4.2%) in pharmaceutical formulation and human plasma analysis. The sensitivity of the method was enhanced by both optimization of the CE procedure and preconcentration performed by liquid-liquid extraction. The LOD for both AML and VAL was 0.03 mg/L, which allows analysis at the level of the drugs possibly found in human plasma. Therefore, the proposed method is suitable for QC in pharmaceutical laboratories and therapeutic drug monitoring in clinical laboratories. 相似文献