首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18406篇
  免费   2385篇
  国内免费   1768篇
化学   13001篇
晶体学   214篇
力学   1098篇
综合类   113篇
数学   1970篇
物理学   6163篇
  2024年   74篇
  2023年   377篇
  2022年   617篇
  2021年   681篇
  2020年   699篇
  2019年   704篇
  2018年   587篇
  2017年   582篇
  2016年   828篇
  2015年   794篇
  2014年   948篇
  2013年   1345篇
  2012年   1576篇
  2011年   1621篇
  2010年   1138篇
  2009年   1014篇
  2008年   1252篇
  2007年   1054篇
  2006年   977篇
  2005年   779篇
  2004年   671篇
  2003年   540篇
  2002年   568篇
  2001年   376篇
  2000年   328篇
  1999年   378篇
  1998年   284篇
  1997年   212篇
  1996年   221篇
  1995年   207篇
  1994年   145篇
  1993年   162篇
  1992年   138篇
  1991年   139篇
  1990年   104篇
  1989年   82篇
  1988年   65篇
  1987年   56篇
  1986年   36篇
  1985年   47篇
  1984年   33篇
  1983年   24篇
  1982年   23篇
  1981年   11篇
  1980年   9篇
  1979年   6篇
  1978年   7篇
  1973年   6篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
871.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   
872.
应用零价铁(ZVI)去除水中(类)金属(含氧)离子是近年来研究的热点。在ZVI除污染过程中,同步提升ZVI除污的反应活性与电子效率对该技术进一步推广应用至关重要。本文综述了近十年(2011-2021年)ZVI的提升技术,主要涉及硫化、外加弱磁场、投加Fe2+、投加氧化剂以及其他新型技术。从不同体系广谱研究以及单一体系具体研究的角度,系统分析了这些技术对ZVI去除含氧水体中(类)金属(含氧)离子的反应活性、去除容量、电子效率的提升表现及作用机制。最后,对ZVI技术未来的研究方向作出了展望,以期促进ZVI技术的进一步完善与发展。本文有望为增强零价铁去除污染物的实际效能提供新的探索方向并完备相关理论基础。  相似文献   
873.
In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography–mass spectrometry, was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through a one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300–700°C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π–π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, and extraction time, were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.0–9.4 ng/L, a linear range of 0.05–10 μg/L, good precisions (1.9–9.4% for intrabatch, 2.9–9.9% for interbatch), and satisfactory recoveries (82.0–111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples.  相似文献   
874.
In the present study, a specific and sensitive approach using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated for the quantitative analysis of 14 constituents in rat plasma, liver, and heart. The method was fully validated and successfully applied to pharmacokinetic, hepatic disposition, and heart tissue distribution studies of 14 compounds after the oral administration of Qi-Li-Qiang-Xin capsule. Ginsenoside Rb1, alisol A, astragaloside IV, and periplocymarin were found to be highly exposed in rat plasma, while toxic components such as hypaconitine, mesaconitine, and periplocin had low circulation levels in vivo. Moreover, sinapine thiocyanate, neoline, formononetin, calycosin, and alisol A exhibited significant liver first-pass effects. Notably, high levels of alisol A, periplocymarin, benzoylmesaconine, and benzoylhypaconine were observed in the heart. Based on high exposure and appropriate pharmacokinetic features in the systemic plasma and heart, astragaloside IV, ginsenoside Rb1, periplocymarin, benzoylmesaconine, benzoylhypaconine, and alisol A can be considered as the main potentially effective components. Ultimately, the results provide relevant information for discovery of effective substances, as well as further anti-heart failure action mechanism investigations of Qi-Li-Qiang-Xin capsule.  相似文献   
875.
A novel solid-phase microextraction coating of phosphorous-containing titanium oxide composite was developed using titanium fiber as a support and a titanium source by hydrothermal oxidation in a phosphoric acid solution containing hydrogen peroxide. The morphology of the fiber coatings was controlled by the conditions of the hydrothermal oxidation reaction. The oriented nanofiber coating was employed to extract several types of representative aromatic analytes. The experimental results demonstrated that the as-prepared fiber exhibited excellent extraction efficiency toward polycyclic aromatic hydrocarbons. Combined with high-performance liquid chromatography with ultraviolet detection, main extraction conditions were optimized, including pH, ionic strength, extraction temperature, stirring rate, extraction time and desorption time. The established method presented good linearity from 0.05 to 200 μg/L with limit of detection ranging from 0.012 to 0.126 μg/L. This convenient and green procedure was suitable for the selective extraction and determination of typical polycyclic aromatic hydrocarbons in environmental water samples. The relative recoveries of 85.8–112% were obtained for the determination of target polycyclic aromatic hydrocarbons in water samples spiked with 5.0 and 15.0 μg/L. Moreover, the as-prepared fiber showed at least 210 extraction/desorption cycles due to its high mechanical and chemical stability.  相似文献   
876.
The isomerism of glucaric acids and the complexity of the composition of Leonurus japonicus Houtt. increased the difficulty of the separation of glucaric acids from the herb. In the present study, three glucaric acids were isolated from Leonurus japonicus Houtt. by using high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography. Cation exchange resin chromatography was applied to remove the alkaloids and enrich the glucaric acid fractions. Preliminary separation of the glucaric acid extract by high-speed countercurrent chromatography was carried out at 45℃ by using an optimized solvent system of ethyl acetate/n-butanol/formic acid/water (1:1:0.01:2, v/v/v/v) with satisfied stationary phase retention and separation factor. The semi-preparative high-performance liquid chromatography was used for further separation and purification of the target fractions, and three monomeric compounds were obtained with purities of 90.0, 91.0, and 95.3%. UV spectroscopy, NMR spectroscopy, and mass spectrometry were employed to identify their structures, which were assigned as 2-syringyl glucaric acid, 2,4-disyringyl glucaric acid, and 3,4-disyringyl glucaric acid, respectively, and 2,4-disyringyl glucaric acid was reported for the first time.  相似文献   
877.
An aqueous colloidal dispersion of Pt nanoparticles (NPs) stabilized by fullerenol C60(OH)12 (Pt:C60(OH)12) was successfully synthesized via liquid-phase chemical reduction. The subsequent pyrolysis of Pt:C60(OH)12 at different temperatures was conducted to afford Pt-doped carbon with different chemical compositions (Pt:C60n). X-ray absorption spectroscopy (XAS) and Infrared (IR) absorption spectroscopy and thermogravimetric measurements revealed that the thus-prepared nanocomposite consists of Pt NPs and high valent Pt-C60(OH)12 complex. One distinct feature of C60(OH)12 matrix as catalyst support is the suppression of size growth of Pt NPs during the pyrolysis up to 300 °C. Electrochemical experiments using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed to find that Pt:C60300 (pyrolyzed at 300 °C) exhibited higher activity than others, that was attributed to the π-extended feature of the as-obtained carbon.  相似文献   
878.
Lithium-sulfur (Li−S) batteries, possessing excellent theoretical capacities, low cost and nontoxicity, are one of the most promising energy storage battery systems. However, poor conductivity of elemental S and the “shuttle effect” of lithium polysulfides hinder the commercialization of Li−S batteries. These problems are closely related to the interface problems between the cathodes, separators/electrolytes and anodes. The review focuses on interface issues for advanced separators/electrolytes based on nanomaterials in Li−S batteries. In the liquid electrolyte systems, electrolytes/separators and electrodes system can be decorated by nano materials coating for separators and electrospinning nanofiber separators. And, interface of anodes and electrolytes/separators can be modified by nano surface coating, nano composite metal lithium and lithium nano alloy, while the interface between cathodes and electrolytes/separators is designed by nano metal sulfide, nanocarbon-based and other nano materials. In all solid-state electrolyte systems, the focus is to increase the ionic conductivity of the solid electrolytes and reduce the resistance in the cathode/polymer electrolyte and Li/electrolyte interfaces through using nanomaterials. The basic mechanism of these interface problems and the corresponding electrochemical performance are discussed. Based on the most critical factors of the interfaces, we provide some insights on nanomaterials in high-performance liquid or state Li−S batteries in the future.  相似文献   
879.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   
880.
The generation of free radicals is a key process in the formation and the collapse of the bubbles in water, however, the direct and dynamic observation of the radicals in this process at single bubbles has never been achieved. Here, the hydroxyl (OH.) and oxygen (O2.−) radicals at single oxygen bubbles are continuously traced using chemiluminescence (CL), in which these radicals at the bubble react with the surrounding luminol in the solution emitting the light. Varied increase trends of luminescence are observed in the generation of a bubble, floating, short parking at the water/air interface and the final explosion, revealing the complexity in the distribution of radicals at the bubble unprecedentedly. Despite more radicals are observed at the bubble generated at a deep position under the water for the stabilization, almost the same amount of radicals are included in the bubbles that is independent on the water pressure during the production of the bubble. This rich information collected from the dynamic study of bubbles illustrates the complicated generation and distribution process of radicals at the bubbles, and will facilitate the understanding of the function about the bubbles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号