首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   123篇
  国内免费   100篇
化学   793篇
晶体学   23篇
力学   60篇
综合类   4篇
数学   171篇
物理学   404篇
  2023年   17篇
  2022年   36篇
  2021年   37篇
  2020年   29篇
  2019年   35篇
  2018年   38篇
  2017年   39篇
  2016年   40篇
  2015年   56篇
  2014年   74篇
  2013年   94篇
  2012年   92篇
  2011年   100篇
  2010年   65篇
  2009年   44篇
  2008年   57篇
  2007年   61篇
  2006年   63篇
  2005年   45篇
  2004年   50篇
  2003年   29篇
  2002年   27篇
  2001年   25篇
  2000年   26篇
  1999年   18篇
  1998年   11篇
  1997年   18篇
  1996年   15篇
  1995年   18篇
  1994年   12篇
  1993年   7篇
  1992年   12篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1982年   7篇
  1981年   9篇
  1980年   21篇
  1979年   6篇
  1977年   8篇
  1976年   5篇
  1974年   6篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1455条查询结果,搜索用时 15 毫秒
71.

In order to select a chelator with excellent stability, easier radiolabeling process and low cost, GRPr antagonist RM26 with the amino acid based chelator was radiolabeled with technetium-99m. The stability of the radiolabeled peptides in PBS, serum as well as in the presence of excess cysteine was compared.

  相似文献   
72.
FeZSM-5沸石上乙苯的吸附态及氧化脱氢   总被引:1,自引:0,他引:1  
FeZSM-5吸附乙苯前后的IR、XPS、ESR及Mossbauer谱表明,乙苯分子的侧链和苯环与FeZSM-5的活性位(以Fe为中心的结构单元)同时发生配位络合作用,减弱了乙苯分子侧链的α和β位C-H键,使其活化,在氧存在下易发生氧化脱氢反应生成苯乙烯.Fe(Ⅲ)是乙苯氧化脱氢的活性中心,尤其是骨架不饱和配位的Fe(Ⅲ)对活化乙苯分子起到了关键作用,碱金属平衡阳离子起到了助催化剂的作用.骨架Fe(Ⅲ)比非骨架Fe(Ⅲ)具有更高的氧化脱氢活性  相似文献   
73.
In this paper we describe a novel method of manufacturing shape-controlled calcium alginate gel microparticles in a microfluidic device. Both manufacturing shape-controlled microparticles and synthesizing hydrogel microparticles could be performed simultaneously in the microfluidic device. The novel microfluidic device comprised of two individual flow-focusing channels and a synthesizing channel was successfully applied as a continuous microfluidic reactor to synthesize gel microparticles with size and shape control. By passive control based on the microchannel geometric confinement and liquid-phase flow rates, we succeeded in producing monodisperse sodium alginate microparticles with diverse shapes (such as plugs, disks, microspheres, rods, and threads) in the flow-focusing channels of the microfluidic device. The shape and size of the sodium alginate microparticles could be tuned by adjusting the flow rates of the various streams. Further stages of the chemical reaction could be initiated by mixing sodium alginate microparticles and calcium chloride (CaCl2) solution in the synthesizing channel. The shapes of the sodium alginate microparticles could be permanently preserved by the synthesis of calcium alginate gel microparticles. The preparation conditions of size- and shape-controlled calcium alginate microparticles and influence factors were studied.  相似文献   
74.
4,4′-methylenedianiline (DAPM) is the main building block for production of 4,4′-methylenediphenyldiisocyanate that has been widely used in the manufacturing of polyurethane materials including medical devices. Although it was revealed that damage to biliary epithelial cells of the liver and common bile duct occurred upon acute exposure to DAPM, the exact mechanism of DAPM toxicity is not fully understood. Both phase I and II biotransformations of DAPM, some of which generate reactive intermediates, are characterized in detail by liquid chromatography electrospray tandem mass spectrometry. The two most prominent metabolites found in rat bile (M2 and M7) implicated glutathione, glucuronic acid, and glycine conjugations (phase II) following hydroxylation, and N-oxidation (phase I). Their decomposition pathways, as evidenced by MS n experiments, have been elucidated in detail. Figure Proposed fragmentation pathways of a DAPM metabolite  相似文献   
75.
Preparation of the enantiomeric pair of 3‐[2‐(3‐benzenesulfonylamino‐7‐oxabicyclo[2.2.1]hept‐2‐yl‐methyl)phenyl] propionic acid, a novel thromboxane antagonist is reported. They are synthesized from either enantiomers of known (1R,2R,3R,4S)‐3‐[2‐(3‐carboxy‐7‐oxabicyclo[2,2,1]hept‐2‐yl‐methyl)phenyl]‐propionic acid methyl ester via epimerization, modified Curtius' rearrangement and sulfonylamino formation. Other derivatives may be prepared similarly.  相似文献   
76.
 The composites comprising Fe-carbon nanotubes (CNTs) on TiO2 were prepared by a modified sol-gel method and characterized by nitrogen adsorption, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. The photocatalytic decomposition of rhodamine B (Rh.B) under UV irradiation and air aeration catalyzed by the composites was measured. The photocatalytic activity of TiO2 nanoparticles was significantly enhanced by the large CNT network that facilitated electron transfer between adsorbed Rh.B molecules and the catalyst substrate and the simultaneous occurrence of the photo-Fenton reaction in the presence of Fe particles. A marked acceleration of the decomposition rate was observed with aeration by flowing air aeration due to the formation of the circulatory photo-Fenton system. Chemical oxygen demand of piggery waste was measured at regular intervals to evaluate the mineralization of wastewater.  相似文献   
77.
Three decadeoxyribonucleotides (d-C-C-A-A-I-A-T-T-G-G, d-C-brC-A-A-G-A-T-T-G-G and d-C-C-A-A-mG-A-T-T-G-G) involving inosine (I), 5-bromocytidine (brC) and 6-O-methylguanosine (mG) were chemically synthesized based on the phosphotriester approach in milligram quantities. The procedures of full protection reaction of these uncommon or modified bases are given in detail. The phosphotriester method was then employed to synthesize all the decamers. It seems the phosphotriester method is applicable to the synthesis of oligodeoxyribonucleotide with these three odd-bases. However, slightly different procedures have to be used while deblocking the fully protected oligodeoxyribonucleotides depending upon the nature of the uncommon or modified base.  相似文献   
78.
A selective and sensitive method was developed for separation and simultaneous determination of catecholamines and amino acids by MEKC with LIF. Interestingly enough, such work has been firstly performed on catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole and the detailed derivatization mechanism was discussed. After derivatization at 60 degrees C for 20 min, NBD-labeled catecholamines and amino acids were separated in a buffer system containing 10 mM sodium tetraborate-Na2HPO4, 20 mM SDS, and 10% v/v ACN at pH 9.75. SDS micelles were employed to improve the fluorescence intensity of catecholamine derivatives efficiently. Under optimum conditions, two catecholamines and 11 amino acids were separated in a short 13 min analysis time and the RSDs for migration time and peak area were less than 0.60 and 6.50%, respectively. The method was successfully applied for the quantification of catecholamines and amino acids in Portulaca oleracea L., human urine sample, and mixed injection sample.  相似文献   
79.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   
80.
Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号