首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   46篇
  国内免费   9篇
化学   394篇
力学   41篇
数学   77篇
物理学   122篇
  2024年   3篇
  2023年   2篇
  2022年   16篇
  2021年   18篇
  2020年   20篇
  2019年   30篇
  2018年   31篇
  2017年   20篇
  2016年   48篇
  2015年   31篇
  2014年   45篇
  2013年   57篇
  2012年   64篇
  2011年   56篇
  2010年   19篇
  2009年   26篇
  2008年   27篇
  2007年   22篇
  2006年   16篇
  2005年   11篇
  2004年   19篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1980年   1篇
排序方式: 共有634条查询结果,搜索用时 12 毫秒
31.
The influence of strain on structural and electronic properties of zig-zag type of boron nitride nanotubes (BNNTs) has been studied by density functional theory calculations. The variations of HOMO–LUMO gaps, geometrical parameters, cohesive energy, radial buckling, isodensity surfaces of the HOMOs and LUMOs, electrophilicity index, chemical potential, and chemical hardness and softness have been investigated for BNNTs at different strains. Our results show that the effect of axial strain on the electronic and structural properties of zig-zag BNNTs depends on the diameter as well as the length of the nanotube.  相似文献   
32.
Following recent experimental works, herein we investigated chemical functionalization of a BN graphene-like sheet with hydrazine (N2H4) molecule based on the density functional theory. We found that the functionalization of the pristine sheet is not possible; while the presence of some structural defects such as Stone–Wales is essential to make it feasible. Functionalization energy of the defected sheet is calculated to be in the range of ?6.1 to ?7.4 kcal/mol at B3LYP/6-31G (d) level. Based on the obtained results, the functionalized BN sheet is found to be more soluble in water in comparison with the pristine sheet which is in good agreement with previous experimental reports. Also, it was found that the electronic properties of the defected sheet are slightly changed upon the chemical functionalization.  相似文献   
33.
Cu-64 was produced via the 68Zn (p,αn)64Cu nuclear reaction (≈200 mCi, >95 % chemical yield at 180 μA for 1.1 h irradiation, (radionuclidic purity >96 %, copper-67 as impurity) followed by purification with amino functionalized nano magnetic oxide, Fe3O4 aiming to remove trace amount of heavy metal ions from aqueous media due to achieve ultra pure [64Cu] CuCl2 for labeling step. [64Cu] labeled 5,10,15,20-tetrakis(penta fluoro phenyl) porphyrin ([64Cu]-TFPP) was prepared using freshly prepared [64Cu] CuCl2 (Cu-64; T 1/2 = 12.7 h) and 5,10,15,20-tetrakis(penta fluoro phenyl)porphyrin (H2TFPP) for 60 min at 100 °C under reflux condition (radiochemical purity: >97 % ITLC, >98 % HPLC, specific activity: 14–16 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 24 h. The partition coefficient was calculated for the compound (log P = 0.73). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and PET imaging up in 2 and 4 h after injection. A detailed comparative pharmacokinetic study performed for 64Cu cation and [64Cu]-TFPP. The complex is mostly washed out from the circulation through kidneys and liver and can be an interesting tumor imaging/targeting agent due to high specific uptake and rapid excretion through the urinary tract.  相似文献   
34.
In this study polypyrrole (PPy) nanoparticles were deposited as a thin film on the modified surface of polyethyleneterephthalate (PET) by in situ chemical polymerization in the presence of sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (DBSNa) and mixture of them as the surfactant. The surface of PET was modified by KOH before deposition and was investigated for conductivity and adhesion of PPy nanoparticles to PET. Resulting conductive flexible films were characterized by UV–Vis spectroscopy, fieldemission scanning electron microscopy, contact angle measurements and four-point-probe technique for conductivity. Direct morphological observation (FESEM) and electrical measurements indicated that the morphology, conductivity and the nature of deposited PPy films depend on surfactant, surface modification of PET and monomer concentration. In optimized process condition, uniform conductive films of PPy were obtained with good adhesion to PET.  相似文献   
35.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   
36.
NiFe2O4 magnetic nanoparticles (MNPs) were synthesized, characterized and applied as an air‐stable, inexpensive and magnetically separable nanocatalyst for the synthesis of structurally diverse sulfides. Efficient methodologies were developed for the synthesis of unsymmetric diaryl sulfides via odourless and one‐pot reactions of triphenyltin chloride/S8 or arylboronic acid/S8 as thiolating agents with aryl halides or nitroarenes as starting materials in the presence of base (K2CO3 or NaOH) and NiFe2O4 MNPs as a catalyst in water or poly (ethylene glycol) as solvent at 80–110 °C. Free from ligand and the unpleasant smell of thiols and with the use of magnetically reusable nanocatalyst, green solvents and commercially available and cheap sulfur source and starting materials, these methods are more eco‐friendly and practical than available protocols for the synthesis of sulfides.  相似文献   
37.
TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L?1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g?1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.  相似文献   
38.
39.
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host–guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye–Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.  相似文献   
40.
The discovery of the fullerene molecules and related forms of carbon such as nanotubes has generated an explosion of activity in chemistry, physics, and materials science. Classical fullerene is an all-carbon molecule in which the atoms are arranged on a pseudospherical framework made up entirely of pentagons and hexagons. A toroidal fullerene (toroidal polyhex) is a cubic bipartite graph embedded on the torus such that each face is a hexagon. In this paper we examine the existence of entire labeling, where face-weights of all 6-sided faces of disjoint union of toroidal fullerenes form an arithmetic progression with common difference \(\hbox {d}\in \{1,2,3\}\).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号