首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   7篇
物理学   6篇
  2022年   1篇
  2018年   1篇
  2013年   2篇
  2011年   1篇
  2007年   3篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Organic ligands play a key role in determining the shape and stability of the perovskite nanocrystals (NCs). However, the ligands often create poor stability and defects through imperfect attachment, in addition to the post synthesis detachment. We developed a novel route to synthesize the ligand?free ambient stable two?dimensional (2D) cesium antimony chloride (Cs3Sb2Cl9) NCs. First, hexagonal shape NCs are synthesized through a fast one?step reaction at room temperature using a reprecipitation method. The shape of hexagonal NCs is further tuned into well?defined 2D plates through a solid-state temperature-driven crystal phase transition. In?situ variable temperature X?ray diffraction and differential scanning calorimetry cycles probe temperature-sensitive metastability and irreversibility of trigonal to orthorhombic crystallographic phase transition. Rietveld analyses quantify volume fractions and coherently diffracting crystallite domains that promote the growth of the two crystal phases. Both the hexagonal NCs and plates show ambient structural stability for over months. The proposed formation mechanism can guide to improve synthetic methods to realize ligand?free shape-controlled perovskite NCs.  相似文献   
12.
In this communication, the surface activity of the ovalbumin (OVA) at the air/water interface was studied to establish the nature of the interaction with the stearic acid (SA) monolayer, based on Langmuir–Blodgett (LB) technique. The interaction was monitored by studying the time (t) variation of surface pressure (π) at constant area (A). The growth of π with time indicates a positive association between the SA and the OVA molecules. The surface compressibility analysis has been performed to specify the phase transition of OVA–SA mixed monolayer. Incorporation/association of OVA within the SA monolayer led to noteworthy changes in surface compressibility and was surface pressure as well as protein concentration dependent. Both the hydrophobic and the Vander wall type interactions are found to be responsible for the association. The quenching of tyrosine band in tryptophan excitation spectrum is observed in steady-state fluorescence spectroscopy. This suggests that the tyrosine is the probable binding site with SA. Due to incorporation of SA, the energy transfer from tyrosine to tryptophan is hindered. At higher pressure, OVA tend to squeeze out from the SA monolayer. The high-resolution field emission scanning electron microscope (FE-SEM) image confirms this observation. Aggregated protein structure observed at high pressure indicates unfolding of protein.  相似文献   
13.
Interaction of native ovalbumin (OVA) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) Langmuir-Blodgett monolayer has been studied at the air-water interface. A compressibility study shows the positive association with DPPC. Adsorption kinetics shows that the protein adsorption is a one-step process and the amount of protein adsorbed depends on the concentration of protein at the water subphase. Incorporation of protein into the DPPC layer is surface-pressure dependent. The compressibility study indicates that the DPPC-OVA interaction is hydrophobic in nature and structural reorganization is eminent to adjust the hydrophobic mismatch between DPPC acyl chains and OVA hydrophobic moieties. At higher pressure, OVA tends to squeeze out from the DPPC monolayer. A nanometer scale FE-SEM image confirms this observation. Globular aggregates of protein of dimension 60-80 nm were observed in DPPC-OVA supported film. Steady-state fluorescence spectroscopy suggests that the tryptophan residues of OVA are main emitting species. The blue shift of tryptophan fluorescence in supported film may be due to the tryptophan molecule of protein exposed to the hydrophobic air phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号