首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
化学   49篇
晶体学   1篇
力学   2篇
数学   5篇
物理学   17篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1984年   4篇
  1981年   2篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
11.
Gelatin nanoparticles can be tuned with respect to their drug loading efficiency, degradation rate, and release kinetics, which renders these drug carriers highly suitable for a wide variety of biomedical applications. The ease of functionalization has rendered gelatin an interesting candidate material to introduce specific motifs for selective targeting to specific organs, but gelatin nanoparticles have not yet been modified to increase their affinity to mineralized tissue. By means of conjugating bone‐targeting alendronate to biocompatible gelatin nanoparticles, a simple method is developed for the preparation of gelatin nanoparticles which exhibit strong affinity to mineralized surfaces. It has been shown that the degree of alendronate functionalization can be tuned by controlling the glutaraldehyde crosslinking density, the molar ratio between alendronate and glutaraldehyde, as well as the pH of the conjugation reaction. Moreover, it has been shown that the affinity of gelatin nanoparticles to calcium phosphate increases considerably upon functionalization with alendronate. In summary, gelatin nanoparticles have been developed, which exhibit great potential for use in bone‐specific drug delivery and regenerative medicine.

  相似文献   

12.
Titanium dioxide (i.e. TiO2) in nano-form is a constituent of many nanomaterials that are used in sunscreens, cosmetics, industrial products and in biomedical applications. Quantification of TiO2 nanoparticles in various matrixes is a topic of great interest for researchers studying the potential health and environmental impacts of nanoparticles. However, analysis of TiO2 as Ti4+ is difficult because current digestion techniques require use of strong acids that may be a health and safety risk in the laboratory. To overcome this problem, we developed a new method to digest TiO2 nanoparticles using ammonium persulfate as a fusing reagent. The digestion technique requires short times to completion and optimally requires only 1 g of fusing reagent. The fusion method showed >95% recovery of Ti4+ from 6 μg mL?1 aqueous suspensions prepared from 10 μg mL?1 suspension of different forms of TiO2, including anatase, rutile and mixed nanosized crystals, and amorphous particles. These recoveries were greater than open hot-plate digestion with a tri-acid solution and comparable to microwave digestion with a tri-acid solution. Cations and anions commonly found in natural waters showed no significant interferences when added to samples in amounts of 10 ng to 110 mg, which is a much broader range of these ions than expected in environmental samples. Using ICP-MS for analysis, the method detection limit (MDL) was determined to be 0.06 ng mL?1, and the limit of quantification (LOQ) was 0.20 ng mL?1. Analysis of samples of untreated and treated wastewater and biosolids collected from wastewater treatment plants yielded concentrations of TiO2 of 1.8 and 1.6 ng mL?1 for the wastewater samples, respectively, and 317.4 ng mg?1 dry weights for the biosolids. The reactions between persulfate ions and TiO2 were evaluated using stoichiometric methods and FTIR and XRD analysis. A formula for the fusing reaction is proposed that involves the formation of sulfate radicals.  相似文献   
13.
14.
15.
This work address a number of fundamental issues and concepts related to local thermal non-equilibrium and the heat flux bifurcation phenomenon in porous media. Different types of heat flux bifurcation phenomenon are discussed in relation to previous works by the authors.  相似文献   
16.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   
17.
Nekoukhou et. al (Commun. Statist. Th. Meth., 2012) introduced a two-parameters discrete probability distribution so-called Discrete Analog of the Generalized Exponential Distribution (in short, DGED). We shall attempt to derive conditions under which a solution for the system of likelihood equations exists and coincides with the maximum likelihood (ML) estimators of the DGED. This kind of ML estimators are coincided with some moment estimators. An approximate computation based on Fisher’s accumulation method is presented in order for the ML estimations of the unknown parameters. Simulation study is also illustrated. Meanwhile, in the sequel two special cases of the DGED are considered. Some statistical properties for such special cases of the DGED are provided. We also propose a linear regression-type model for estimation of the parameter. Finally, we fit the DGED to a real data set and compare it with two other discrete distributions.  相似文献   
18.
Ring-Shape-Hole Photonic Crystal Waveguides (RSHPCW) is a popular structure in designing optical buffers attracted many attentions recently. There are some parameters such as the radii of holes and pillars next to the defect that have significant effects on slow light properties. Consequently, one of the promising methods for effectively slowing the light speed down and controlling dispersion is to optimize these parameters, which is the motivation of this study. Particle Swarm Optimization (PSO) algorithm is one of the best proposed heuristic optimization algorithms in Artificial Intelligence applied to many engineering problem. In this work, this algorithm is employed to find the best values of the aforementioned radii for maximizing Normalized Delay-Bandwidth Product (NDBP) of RSHPCW structure as the first systematic optimizer. Calculation results show that there are 34% and 41% improvement in NDBP and bandwidth compared to the previous works, very substantial achievements in this area.  相似文献   
19.
20.
A new and simple flow injection method followed by atomic absorption spectrometry has been developed for the indirect determination of ascorbic acid. The proposed method is based on oxidation of ascorbic acid to dehydroascorbic acid using a solid-phase manganese dioxide (30% m/m suspended on silica gel beads) reactor. The flow of the sample through the column reduces the MnO2 to Mn(II) in an acidic carrier stream of 6.3 mM HNO3 (pH 2.2) with flow rate of 4.0 ml/min at room temperature; Mn(II) is measured by atomic absorption spectrometry. The absorbance of Mn(II) is proportional to the concentration of ascorbic acid in the sample. The calibration curve was linear up to 30 mg/L, with a detection limit of 0.2 mg/L for a 220 microL injected sample volume. The developed procedure was found to be suitable for the determination of AsA in pharmaceuticals and foods with a relative standard deviation better than 1.09% and a sampling rate of about 95 h(-1). The results exhibit no interference from the presence of large amounts of organic compounds. The reliability of the method was established by parallel determination against the 2,6-dichlorophenol-indophenol methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号