首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   12篇
  国内免费   3篇
化学   263篇
晶体学   7篇
力学   12篇
数学   31篇
物理学   107篇
  2023年   6篇
  2022年   4篇
  2021年   11篇
  2020年   13篇
  2019年   14篇
  2018年   16篇
  2017年   11篇
  2016年   26篇
  2015年   9篇
  2014年   15篇
  2013年   33篇
  2012年   36篇
  2011年   39篇
  2010年   25篇
  2009年   11篇
  2008年   23篇
  2007年   25篇
  2006年   13篇
  2005年   11篇
  2004年   16篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1926年   2篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
191.
192.
193.
Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X‐ray diffraction, and vibrational sum‐frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self‐assembled into (water) stable and adaptable ultra‐flat organothiol monolayers over homogenous areas as large as 1 cm2. The strength of the mica–organothiol interactions could be tuned by exchanging the potassium surface ions for copper ions. Several of these organothiol monolayers were subsequently used as a template for calcite growth.  相似文献   
194.
Collagenases are the principal enzymes responsible for the degradation of collagens during embryonic development, wound healing, and cancer metastasis. However, the mechanism by which these enzymes disrupt the highly chemically and structurally stable collagen triple helix remains incompletely understood. We used a single-molecule magnetic tweezers assay to characterize the cleavage of heterotrimeric collagen I by both the human collagenase matrix metalloproteinase-1 (MMP-1) and collagenase from Clostridium histolyticum. We observe that the application of 16 pN of force causes an 8-fold increase in collagen proteolysis rates by MMP-1 but does not affect cleavage rates by Clostridium collagenase. Quantitative analysis of these data allows us to infer the structural changes in collagen associated with proteolytic cleavage by both enzymes. Our data support a model in which MMP-1 cuts a transient, stretched conformation of its recognition site. In contrast, our findings suggest that Clostridium collagenase is able to cleave the fully wound collagen triple helix, accounting for its lack of force sensitivity and low sequence specificity. We observe that the cleavage of heterotrimeric collagen is less force sensitive than the proteolysis of a homotrimeric collagen model peptide, consistent with studies suggesting that the MMP-1 recognition site in heterotrimeric collagen I is partially unwound at equilibrium.  相似文献   
195.
l-myo-inositol-1-phosphate synthase (MIPS; EC: 5.5.1.4) activity has been detected and partially purified for the first time from human fetal liver. Crude homogenate from the fetal liver was subjected to streptomycin sulphate precipitation and 0?C60?% ammonium sulphate fractionation followed by successive chromatography through DEAE cellulose and BioGel A 0.5-m columns. After the final chromatography, the enzyme was purified 51-fold and 3.46?% of MIPS could be recovered. The human fetal liver MIPS specifically utilised d-glucose-6-phosphte and NAD+ as its substrate and coenzyme, respectively. It shows pH optima between 7.0 and 7.5 while the temperature maximum was at 40?°C. The enzyme activity was remarkably stimulated by NH 4 + , slightly stimulated by K+ and Ca2+ and highly inhibited by Zn2+, Cu2+ and Hg2+. The K m values of MIPS for d-glucose-6-phosphate and NAD+ were found to be as 1.15 and 0.12?mM respectively while the V max values were 280?nM and 252?nM for d-glucose-6-phosphate and NAD+ correspondingly. The apparent molecular weight of the native enzyme was determined to be 170?kDa.  相似文献   
196.
In the presence of a small amount of a proteinous amino acid (arginine/tryptophan/histidine) or a nucleoside (adenosine/guanosine/cytidine), graphene oxide (GO) forms supramolecular stable hydrogels. These hydrogels have been characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analysis, Raman spectroscopy, and rheology. The morphology of the hydrogel reveals the presence of nanofibers and nanosheets. This suggests the supramolecular aggregation of GO in the presence of an amino acid/nucleoside. Rheological studies of arginine containing a GO-based hydrogel show a very high G' value (6.058 × 10(4) Pa), indicating the rigid, solid-like behavior of this gel. One of these hydrogels (GO-tryptophan) has been successfully utilized for the in situ synthesis and stabilization of Au nanoparticles (Au NPs) within the hydrogel matrix without the presence of any other external reducing and stabilizing agents to make Au NPs containing the GO-based nanohybrid material. The Au NPs containing the hybrid hydrogel has been characterized by using UV/vis spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In this study, gold salt (Au(3+)) has been bioreduced by the tryptophan within the hydrogel. This is a facile "green chemical" method of preparing the GO-based nanohybrid material within the hydrogel matrix. The significance of this method is the in situ reduction of gold salt within the gel phase, and this helps to decorate the nascently formed Au NPs almost homogeneously and uniformly on the surface of the GO nanosheets within the gel matrix.  相似文献   
197.
Continuous depth sensing indentation microhardness measurements were performed to investigate the effect of filler content and dimensionality on the mechanical behaviour of different polymer nanocomposites. In 1D filler reinforced nanocomposites (such as PP/MWCNT system), both the hardness and the indentation modulus were found to appreciably increase up to a filler weight fraction of 1.6 wt.-%. Further addition of the filler changed the properties only insignificantly. In the nanocomposites with 2D filler (such as in PA6/LS) both the hardness and the indentation modulus increase notably with the addition of the filler and showed intense plasticity. In the investigated systems and composition range, the 3D filler (such as PP/OS2) showed no reinforcing effect at all. In was concluded that the 1D and 2D nanofillers play much more effective reinforcing role to improve the mechanical properties than the 3D fillers.  相似文献   
198.
Let \(\mathcal{S}\) be a finite additively written commutative semigroup, and let \(\exp(\mathcal{S})\) be its exponent which is defined as the least common multiple of all periods of the elements in \(\mathcal{S}\) . For every sequence T of elements in \(\mathcal{S}\) (repetition allowed), let \(\sigma(T) \in\mathcal{S}\) denote the sum of all terms of T. Define the Davenport constant \(\mathsf{D}(\mathcal{S})\) of \(\mathcal{S}\) to be the least positive integer d such that every sequence T over \(\mathcal{S}\) of length at least d contains a proper subsequence T′ with σ(T′)=σ(T), and define \(\mathsf{E}(\mathcal{S})\) to be the least positive integer ? such that every sequence T over \(\mathcal{S}\) of length at least ? contains a subsequence T′ with \(|T|-|T'|= \lceil\frac{|\mathcal{S}|}{\exp(\mathcal{S})} \rceil \exp(\mathcal{S})\) and σ(T′)=σ(T). When \(\mathcal{S}\) is a finite abelian group, it is well known that \(\lceil\frac{|\mathcal{S}|}{\exp(\mathcal{S})} \rceil\exp (\mathcal{S})=|\mathcal{S}|\) and \(\mathsf{E}(\mathcal{S})=\mathsf{D}(\mathcal{S})+|\mathcal{S}|-1\) . In this paper we investigate whether \(\mathsf{E}(\mathcal{S})\leq \mathsf{D}(\mathcal{S})+ \lceil\frac{|\mathcal{S}|}{\exp(\mathcal {S})} \rceil \exp(\mathcal{S})-1\) holds true for all finite commutative semigroups \(\mathcal{S}\) . We provide a positive answer to the question above for some classes of finite commutative semigroups, including group-free semigroups, elementary semigroups, and archimedean semigroups with certain constraints.  相似文献   
199.
If a coupled three‐state electronic manifold forms a sub‐Hilbert space, it is possible to express the non‐adiabatic coupling (NAC) elements in terms of adiabatic–diabatic transformation (ADT) angles. Consequently, we demonstrate: (a) Those explicit forms of the NAC terms satisfy the Curl conditions with non‐zero Divergences; (b) The formulation of extended Born‐Oppenheimer (EBO) equation for any three‐state BO system is possible only when there exists coordinate independent ratio of the gradients for each pair of ADT angles leading to zero Curls at and around the conical intersection(s). With these analytic advancements, we formulate a rigorous EBO equation and explore its validity as well as necessity with respect to the approximate one (Sarkar and Adhikari, J Chem Phys 2006, 124, 074101) by performing numerical calculations on two different models constructed with different chosen forms of the NAC elements. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   
200.
Pauling and Corey proposed a pleated‐sheet configuration, now called α‐sheet, as one of the protein secondary structures in addition to α‐helix and β‐sheet. Recently, it has been suggested that α‐sheet is a common feature of amyloidogenic intermediates. We have investigated the stability of antiparallel β‐sheet and two conformations of α‐sheet in solution phase using the density functional theoretical method. The peptides are modeled as two‐strand acetyl‐(Ala)2N‐methylamine. Using stages of geometry optimization and single point energy calculation at B3LYP/cc‐pVTZ//B3LYP/6‐31G* level and including zero‐point energies, thermal, and entropic contribution, we have found that β‐sheet is the most stable conformation, while the α‐sheet proposed by Pauling and Corey has 13.6 kcal/mol higher free energy than the β‐sheet. The α‐sheet that resembles the structure observed in molecular dynamics simulations of amyloidogenic proteins at low pH becomes distorted after stages of geometry optimization in solution. Whether the α‐sheets with longer chains would be increasingly favorable in water relative to the increase in internal energy of the chain needs further investigation. Different from the quantum mechanics results, AMBER parm94 force field gives small difference in solution phase energy between α‐sheet and β‐sheet. The predicted amide I IR spectra of α‐sheet shows the main band at higher frequency than β‐sheet. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号