首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   24篇
  国内免费   4篇
化学   593篇
晶体学   28篇
力学   39篇
数学   134篇
物理学   350篇
  2022年   15篇
  2021年   13篇
  2020年   11篇
  2019年   15篇
  2018年   14篇
  2017年   17篇
  2016年   36篇
  2015年   13篇
  2014年   19篇
  2013年   67篇
  2012年   47篇
  2011年   63篇
  2010年   46篇
  2009年   44篇
  2008年   65篇
  2007年   48篇
  2006年   56篇
  2005年   41篇
  2004年   29篇
  2003年   25篇
  2002年   24篇
  2001年   19篇
  2000年   23篇
  1999年   14篇
  1998年   12篇
  1997年   13篇
  1996年   14篇
  1995年   20篇
  1994年   21篇
  1993年   29篇
  1992年   24篇
  1991年   6篇
  1990年   7篇
  1989年   13篇
  1988年   12篇
  1987年   12篇
  1985年   12篇
  1984年   16篇
  1983年   13篇
  1982年   12篇
  1981年   9篇
  1980年   15篇
  1979年   10篇
  1978年   9篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
  1973年   6篇
  1964年   6篇
  1955年   6篇
排序方式: 共有1144条查询结果,搜索用时 0 毫秒
91.
A mesophilic bacterial culture producing a novel thermostable alkaline lipase was isolated from oil rich soil sample and identified as Bacillus subtilis EH 37. The lipase was partially purified by ammonium sulfate precipitation and hydrophobic interaction chromatography with 17.8-fold purification and 41.9 U/ml specific activity. The partially purified enzyme exhibited maximum activity at pH 8.0 and at 60 °C. It retained 100% of activity at 50 °C and 60 °C for 60 min. The presence of Ca+2, Mg+2, and Zn2+ exhibited stimulatory effect on lipase activity, whereas Fe+3 and Co+2 reduced its activity. The enzyme retained more than 80% of its initial activity upon exposure to organic solvents, exhibited 107% and 115% activity in the presence of 15% isopropyl alcohol and 30% n-hexane, respectively. The EH 37 lipase also proved to be an efficient catalyst in synthesis of ethyl caprylate in organic solvent, thus providing a concept of application of B. subtilis lipase in non-aqueous catalysis.  相似文献   
92.
1-Alkyl-2-{(o-thioalkyl)phenylazo}imidazole (SRaaiNR/, 1) reacts with Co(ClO4)2·6H2O to form [Co(SRaaiNR/)2](ClO4)2 (2). The single crystal X-ray structure of one of the complexes of 2 shows a tridentate chelation N(imidazole), N(azo), S(thioether) system. In the structure one of ClO4 anions shows disorder and forms an (imidazole)C–H···O(ClO3) interaction leading to a 1-D chain. Co(OAc)2.4H2O and SRaaiNR/ react in the presence of NH4SCN (1:1:2 mole ratio) in methanol and the complex [Co(SRaaiNR/)2(SCN)2] (3) has been separated. The single crystal X-ray structure determination has established the structure of the complexes in which the ligand SRaaiNR/ acts in a bidentate N(imidazole), N(azo) chelation mode. A cyclic voltammogram shows a Co(III)/Co(II) oxidative response at 0.6–0.8 V and azo reductions. DFT computation using optimized geometry support the electronic spectral and redox properties of the complexes.  相似文献   
93.
Os(II) hydridocarbonyl complexes of coumarinyl azoimidazoles, [Osh(CO)(PPh3)2(CZ‐4R‐R′)]0/+ ( 3 , 4 ) (CZ‐R‐H = 2‐(coumarinyl‐6‐azo)‐4‐substituted imidazole or 1‐alkyl‐2‐(coumarinyl‐6‐azo)‐4‐substituted imidazole), were characterized from spectroscopic data and the single‐crystal X‐ray data for one of the complexes, [Osh(CO)(PPh3)2(CZ‐4‐Ph)] ( 3c ) (CZ‐4‐Ph = 2‐(coumarinyl‐6‐azo)‐4‐phenylimidazolate), confirmed the structure. The complexes show higher emission (quantum yield ? = 0.0163–0.16) and longer lifetime (τ = 1.4–10.3 ns) than free ligands (? = 0.0012–0.0185 and τ = 0.685–1.306 ns). Cyclic voltammetry shows quasi‐reversible metal oxidation at 0.67–0.94 V for [Os(III)/Os(II)] and 1.21–1.36 V for [Os(IV)/Os(III)] and subsequent azo reductions (?0.68 to ?0.95 V for [? N?N? ]/[? N N? ]? and irreversible < ?1.2 V for [? N N? ]?/[? N? N? ]2?) of the chelated coumarinyl azoimidazole. The complexes are photostable and show better photovoltaic power conversion efficiency than free ligands. Also, the complexes were used as catalysts for the oxidation of primary/secondary alcohols to aldehydes/ketones using oxidizing agents like N‐methylmorpholine N‐oxide, t‐BuOOH and H2O2. Density functional theory computation was carried out from the optimized structures and the data obtained were used to interpret the electronic and photovoltaic properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
94.
HL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru(C(6)H(6))Cl(2)]2, HL yields the cation [Ru(C(6)H(6)){5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine}Cl]+, MeL gives the cation [Ru(C(6)H(6))(MeL)Cl]+. Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C(6)H(6))(MeL)Cl]+ under the reaction conditions employed.  相似文献   
95.
A new series of group 6 carbonyl complexes of N-[(2-pyridyl)methyliden]-α (or β)-aminonaphthalene (α/β-NaiPy) are described in this work. The complexes are formulated as cis-[M(CO)4(α/β-NaiPy)] by elemental, mass and other spectroscopic data. The complexes show emission spectra at room temperature and their quantum yield lies between 0.4 and 0.5. All the complexes exhibit negative solvatochromism. Cyclic voltammetry shows metal centred oxidation and ligand reductions.  相似文献   
96.
“Grafting through” polymerization represents copolymerization of free monomers in solution and polymerizable units bound to a substrate. Free polymer chains are formed initially in solution and can incorporate the surface-bound monomers, and thereby, get covalently bonded to the surface during the polymerization process. As more growing chains attach to the surface-bound monomers, an immobilized polymer layer is formed on the surface. We use a combination of computer simulation and experiments to comprehend this process for monomers bound to a flat impenetrable substrate. We concentrate specifically on addressing the effect of spatial density of the surface-bound monomers on the formation of the surface-attached polymers. We employ a lattice-based Monte Carlo model utilizing the bond fluctuation model scheme to provide molecular-level insight into the grafting process. For experimental validation, we create gradients of density of bound methacrylate units on flat silicon wafers using organosilane chemistry and carry out “grafting through” free radical polymerization initiated in bulk. We report that the proximity of the surface-bound polymerizable units promotes the “grafting through” process but prevents more free growing chains to “graft through'' the polymerizable units. The “grafting through” process is self-limiting in nature and does not affect the overall density of the surface-bound polymer layer, except in case of the highest theoretical packing density of surface-bound monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 263–274  相似文献   
97.
The aggregation/deaggregation of chlorin p6 with the surfactants CTAB, SDS, and TX 100 have been studied by using absorption, fluorescence, and light scattering techniques. The ionic surfactants are found to cause aggregation of fluorophore at submicellar concentrations. The aggregates dissolve at higher surfactant concentrations to yield micellized monomers. This is rationalized by the interplay of electrostatic and hydrophobic effects. A prominent pH effect is observed in the ionic surfactant induced aggregation process as the charge on the fluorophore is controlled by the pH of the medium. Interestingly, the neutral TX-100 also induces aggregation of chlorin p6 at low concentrations, indicating that hydrophobic effects by themselves can cause aggregation unless there is a hindrance by repulsive electrostatic effects.  相似文献   
98.
A guanine-rich PNA dodecamer having the sequence H-G4T4G4-Lys-NH2 (G-PNA) hybridizes with a DNA dodecamer of homologous sequence to form a four-stranded quadruplex (Datta, B.; Schmitt, C.; Armitage, B. A. J. Am. Chem. Soc. 2003, 125, 4111-4118). This report describes quadruplex formation by the PNA alone. UV melting curves and fluorescence resonance energy transfer experiments reveal formation of a multistranded structure stabilized by guanine tetrads. The ion dependency of these structures is analogous to that reported for DNA quadruplexes. Electrospray ionization mass spectrometry indicates that both dimeric and tetrameric quadruplexes are formed by G4-PNA, with the dimeric form being preferred. These results have implications for the use of G-rich PNA for homologous hybridization to G-rich targets in chromosomal DNA and suggest additional applications in assembling quadruplex structures within lipid bilayer environments.  相似文献   
99.
An efficient and high yielding methodology developed for the synthesis of fused 7‐azaindole derivatives via one pot multicomponent assembly process of cyclic 1,3‐dicarbonyls with substituted aldehydes and 5‐amino‐1‐tert‐butyl‐1H‐pyrrole‐3‐carbonitrile. The transformation occurs via domino Knoevenagel‐ Michael reaction followed by intramolecular cyclization in the presence of catalytic amount of InCl3 (10 mol %). Mild reaction conditions, easy isolation of products, and good to excellent yields in a shorter period of time are the silent features of present methodology. Structures of all the newly prepared compounds have been corroborated by various spectroscopic methods.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号