首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21593篇
  免费   1321篇
  国内免费   864篇
化学   10082篇
晶体学   460篇
力学   1349篇
综合类   47篇
数学   2132篇
物理学   9708篇
  2023年   194篇
  2022年   390篇
  2021年   387篇
  2020年   417篇
  2019年   393篇
  2018年   461篇
  2017年   447篇
  2016年   621篇
  2015年   571篇
  2014年   680篇
  2013年   1173篇
  2012年   1416篇
  2011年   1674篇
  2010年   1215篇
  2009年   1178篇
  2008年   1301篇
  2007年   1231篇
  2006年   1240篇
  2005年   1004篇
  2004年   871篇
  2003年   660篇
  2002年   645篇
  2001年   1016篇
  2000年   711篇
  1999年   599篇
  1998年   368篇
  1997年   388篇
  1996年   301篇
  1995年   250篇
  1994年   221篇
  1993年   191篇
  1992年   201篇
  1991年   172篇
  1990年   157篇
  1989年   131篇
  1988年   116篇
  1987年   92篇
  1986年   86篇
  1985年   93篇
  1984年   71篇
  1983年   43篇
  1982年   41篇
  1981年   33篇
  1979年   27篇
  1978年   25篇
  1977年   23篇
  1976年   34篇
  1975年   34篇
  1974年   26篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Phosphors with outstanding luminescence thermal stability are desirable for high-power phosphor-converted light-emitting diode (pc-LED) lightings. High structural rigidity and large bandgap of phosphor hosts are helpful to suppress nonradiative relaxation of optical centers and realize excellent thermal stability. Unfortunately, few host materials simultaneously possess aforementioned structural features. Herein, we confirm that Sr3(PO4)2 (SPO) phosphate possesses high structural rigidity (Debye temperature, ΘD = 559 K) and large bandgap (Eg = 8.313 eV) by density functional theory calculations. As expected, Eu2+-doped SPO purple-blue phosphors show extraordinary thermal stability. At 150/300 °C, SPO:5%Eu2+ presents emission loss of only 4%/8% and a predicated ultrahigh thermal quenching temperature of 973 °C. The most strikingly discoveries here are that thermal-induced emission compensation appears within two distinct Eu2+ sites of SPO host. The outstanding thermal stability, on one hand, is attributed to rigid structure and large bandgap of host that inhibits nonradiative relaxation of Eu2+ and on the other hand, the emission self-compensation of Eu2+. Benefiting from synergistic effect of emission compensation and nonradiative transition restriction of Eu2+, as-prepared SPO:5%Eu2+ purple-blue phosphor not only presents superior thermal stability but also high internal quantum efficiency of 95.1% and excellent hydrolysis resistant. Some advanced applications are explored including white LED lighting and wide-color-gamut display. Our work provides in-deep insights into structure-property relationships of thermally stable phosphors.  相似文献   
963.
Adsorptive separation of C2H6 from C2H4 by adsorbents is an energy-efficient and promising method to boost the polymer grades C2H4 production. However, that C2H6 and C2H4 display very similar physical properties, making their separation extremely challenging. In this work, by regulating the pore environment in a family of chitosan-based carbon materials (C-CTS-1, C-CTS-2, C-CTS-4, and C-CTS-6)- we target ultrahigh C2H6 uptake and C2H6/C2H4 separation, which exceeds most benchmark carbon materials. Explicitly, the C2H6 uptake of C-CTS-2 (166 cm3/g at 100 kPa and 298 K) has the second-highest adsorption capacity among all the porous materials. In addition, C-CTS-2 gives C2H6/C2H4 selectivity of 1.75 toward a 1:15 mixture of C2H6/C2H4. Notably, the adsorption enthalpies for C2H6 in C-CTS-2 are low (21.3 kJ/mol), which will facilitate regeneration in mild conditions. Furthermore, C2H6/C2H4 separation performance was confirmed by binary breakthrough experiments. Under different ethane/ethylene ratios, C-CTS-X extracts a low ethane concentration from an ethane/ethylene mixture and produces high-purity C2H4 in one step. Spectroscopic measurement and diffraction analysis provide critical insight into the adsorption/separation mechanism. The nitrogen functional groups on the surface play a vital role in improving C2H6/C2H4 selectivity, and the adsorption capacities depend on the pore size and micropore volume. Moreover, these robust porous materials exhibit outstanding stability (up to 800 °C) and can be easily prepared on a large scale (kg) at a low cost (~$26 per kg), which is very significant for potential industrial applications.  相似文献   
964.
Novel Mn3O4-promoted double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst was constructed by one-step synthesis method and two-step synthesis method. The X-ray powder diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, optical and photoluminescence demonstrated that the MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst was synthesized by the two-step synthesis method comprehends a high crystallinity, charge carrier migration and separation efficiency, and relatively low optical absorption coefficient. The MgAl2O4/CeO2/Mn3O4 heterojunction photocatalysts were efficiently used as simulated sunlight-driven n-n and p-n double junction photocatalyst for the simultaneous degradation of methylene blue (MB) dye. The continuous double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunctions strengthened the function of single n-n or p-n junction and guided the charge carrier migration and separation direction; thus, the oxidation and reduction reactions occur at the active site of spatial separation and prevent the recombination of electrons and holes. The results suggest that the continuous double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunctions are very promising candidate material for enhancing the photocatalytic activity in the photocatalytic degradation of MB dye.  相似文献   
965.
In this study, flexible silk fibroin protein and biocompatible barium hexaferrite (BaM) nanoparticles were combined and electrospun into nanofibers, and their physical properties could be tuned through the mixing ratios and a water annealing process. Structural analysis indicates that the protein structure of the materials is fully controllable by the annealing process. The mechanical properties of the electrospun composites can be significantly improved by annealing, while the magnetic properties of barium hexaferrite are maintained in the composite. Notably, in the absence of a magnetic field, cell growth increased slightly with increasing BaM content. Application of an external magnetic field during in vitro cell biocompatibility study of the materials demonstrated significantly larger cell growth. We propose a mechanism to explain the effects of water annealing and magnetic field on cell growth. This study indicates that these composite electrospun fibers may be widely used in the biomedical field for controllable cell response through applying different external magnetic fields.  相似文献   
966.
In this study, a novel flame retardant, that is, amino-terminated phosphorous polyborosiloxane (N-PBSi), was synthesized via a two-step polymerization reaction. The product's chemical structure was characterized firstly by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. It was proved that the prepared N-PBSi was indeed amino terminated and contained multiple flame-retardant elements including P, B, and Si. Besides, based on the variation of its FTIR spectra from room temperature to 700 °C and the subsequent thermogravimetric results, there also showed that the resultant N-PBSi had desirable thermal stability. This is a prerequisite for preparing flame-retardant polymethacrylimide (PMI) as PMI synthesis requires a high temperature treatment process up to 160 °C. On this basis, the condition for N-PBSi synthesis was then optimized to obtain flame retardants with better quality and higher yield. According to the experiments, the reactant ratio and reaction time were recommended to be 1:1.33:3 and 6 h, respectively. To evaluate the effectiveness of N-PBSi further, the flame retardancy of PMI with N-PBSi grafted was then investigated. The UL-94 rating and limiting oxygen index value of the PMI with 15 wt.% of N-PBSi incorporated were tested to be V-0 and 27%, respectively, indicative of greatly enhanced flame-retardant properties. In addition, the flame-retardant mechanism of N-PBSi on PMI was also discussed. Given all of these, the prepared N-PBSi as a reactive and effective flame retardant was promising for PMI.  相似文献   
967.
PBO fiber is one of the most promising reinforcements in resin matrix composite because of its excellent mechanical properties. However, the inert and smooth surfaces make it the poor interface adhesion with resin matrix, which seriously limits the application in composites. In this article, we report a method to modify the surface of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane(BisAPAF)in supercritical CO2 to enhance interfacial properties. Chemical structures, surface elemental composition and functional groups, and surface morphology were characterized by FT-IR spectrometer, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The mechanical properties of the samples were tested by a tensile tester. Static contact angle and microdebonding tests were used to characterize the wetting ability and interfacial shear strength (IFSS) of the fiber and epoxy resin. The results showed that the BisAPAF could be solved in scCO2 and introduced more groups, –NH2, –OH, and –CF3 on the fiber surface, resulting in the mechanical properties and the wettability of PBO fiber slightly improved. Moreover, the fiber surface roughness was also increased obviously. The IFSS between the modified PBO fiber and epoxy resin increased from 8.18 MPa to 31.4 MPa when the treating pressure was 14 MPa. In general, the method to modify PBO fibers surface using BisAPAF in scCO2 can effectively improve their interfacial properties.  相似文献   
968.
Low-cost and high-efficiency production of silicon-based material is the key to improve the energy density of lithium-ion batteries. Herein, we propose a novel structure of FeSi2–Si eutectic nanoparticles protected by the SiOx shell. FeSi2, as a buffer phase can improve the electrochemical stability of the electrode. A SiOx shell is formed on the surface of the nanoparticles through the passivation process. SiOx encapsulated FeSi2–Si eutectic nanoparticles exhibit excellent capacity of 674.9 mAh/g after 500 charge/discharge cycles. The capacity retention rate is above 90% after the stabilization process. This work provides a new nanomaterial design for high performance silicon-based anode materials of lithium-ion batteries.  相似文献   
969.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   
970.
Xie  Xiao-Bin  Xu  Qing  Huang  Duan-Ping  Xiao  Jing  Chen  Min  Zhao  Kai  Chen  Dong-Chu  Zhang  Feng 《Journal of Solid State Electrochemistry》2021,25(3):1007-1018
Journal of Solid State Electrochemistry - The electrocatalytic properties of porous La0.3Sr0.7Fe0.7Cr0.3O3−δ electrodes towards oxygen reduction reaction were investigated as a function...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号