首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   9篇
  国内免费   2篇
化学   180篇
晶体学   2篇
力学   3篇
数学   2篇
物理学   18篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   9篇
  2006年   15篇
  2005年   11篇
  2004年   16篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1968年   1篇
排序方式: 共有205条查询结果,搜索用时 250 毫秒
31.
N-vinyl-n-butyramide (NVBA), N-vinylisovaleramide (NVIVA), and N-vinyl-n-valeramide (NVVA), which are N-vinylalkylamides with different alkyl groups were synthesized and their solution behavior in a polymeric form was examined. Copolymers of N-vinylisobutyramide (NVIBA) with N-vinylacetamide (NVA), NVIBA with NVVA, and NVVA with NVA were prepared by the solution polymerization to control the LCSTs. The resultant polyNVBA showed a lower critical solution temperature (LCST) sharply at 32°C, but polyN-vinylisovaleramide (polyNVIVA) and polyN-vinyl-n-valeramide(polyNVVA) that have n-butyl and isobutyl groups, respectively, on their side chains were insoluble even in cold water. The water solubility of the resulting polymers was found to vary, depending on the molecular shapes as well as the side chain length of the alkyl groups in question. The copolymers consisting of NVVA, NVIBA, and NVA in water showed LCSTs sharply between 10 and 90°C, depending on changes in their comonomer content. It was found that the changes in LCST that are caused by the incorporation of comonomers are due to changes in the overall hydrophilicity of the polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3087–3094, 1997  相似文献   
32.
Poly(styrene) nanospheres having poly(N-vinylisobutyramide)s (PNVIBA)s, which are structurally the same composition as well-known thermosensitive poly(N-isopropylacrylamide)s (PNIPAAm)s and show the thermosensitive property as well, on their surfaces were synthesized by the free radical polymerization of hydrophilic PNVIBA macromonomers and hydrophobic styrene with AIBN as a radical initiator in ethanol as a polar solvent and were characterized in regard to their thermosensitive properties. Both the NVIBA oligomers and PNVIBA macromonomers that we synthesized showed a lower critical solution temperature (LCST) at around 40°C, as was predicted by our previous research. The nanospheres were spherical in form and have a narrow size distribution. Their sizes could be controlled by varying the molecular weight of the macromonomers and the amount of it in feed. The size in the nanosphere became small above the LCST of the corresponding macromonomer, possibly due to thermosensitive shrinking of the PNVIBA on the nanosphere surface, while transmittance of its dispersion did not change at all at studied temperature range. The nanospheres having the PNVIBA on their surfaces, which response sharply to atmospheres such as dispersion temperature, can be significant and useful materials in technological and medical fields. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2581–2587, 1998  相似文献   
33.
The crystal structure of monobarium dititanium pentaoxide, BaTi2O5, synthesized by a floating‐zone method, was studied by X‐ray diffraction. Previous reports describe the structure as being in the monoclinic centrosymmetric space group C2/m. We have recently found that this material exhibits ferroelectricity, and therefore BaTi2O5 should have lower symmetry. The crystal structure of BaTi2O5 was refined in space group C2, revealing a displacement of the Ti atoms along the b axis. This result is consistent with the fact that the ferroelectricity of BaTi2O5 was only observed along the b axis.  相似文献   
34.
Monodisperse polymeric nanospheres, which consist of polystyrene cores and poly(ethylene glycol) (PEG) branches on their surfaces, were prepared by the dispersion copolymerization of styrene (St) with PEG macromonomers that had a methacryloyl (MMA-PEG) or p-vinylbenzyl (St-PEG) end group in various organic solvent/water media. Electron spectroscopy for chemical analysis (ESCA) of the nanosphere surfaces indicated that PEG macromonomer chains were favorably located on their surfaces. The morphologies of the nanospheres were observed via a scanning electron micrograph (SEM), and particle sizes were estimated by a submicron particle analyzer. When both the concentration of macromonomers and molecular weight were higher, small nanospheres in diameter were obtained. Larger nanospheres in diameter were obtained using macromonomers with low molecular weight at lower concentration. The functions that correlate the diameter (Dn) on different concentration units were Dn = K[St]0.64[MMA-PEG]−0.53±0.01[I]−0.49 and Dn = K[St]0.80[St-PEG]−0.69±0.01[I]−0.22, where [I], [St], [MMA-PEG], and [St-PEG] are initiator, styrene, MMA-PEG, and St-PEG macromonomer concentration in feed, respectively. When the reaction parameters such as the molecular weight of the macromonomers were properly chosen, the particle size could be controlled in a range from ca. 80 to 3100 nm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2155–2166, 1999  相似文献   
35.
Size tunable amphiphilic NPs composed of poly(γ‐PGA) and hydrophobic amino acids, such as Phe or Trp, were prepared. To prepare these size‐regulated NPs, γ‐PGA‐g‐Phe or γ‐PGA‐g‐Trp dissolved in DMSO was added to various concentrations of NaCl solution. The γ‐PGA‐Phe and γ‐PGA‐Trp formed monodispersed NPs, and the size of NPs can be easily controlled by NaCl concentration. The different‐sized NPs showed the same structure. The encapsulation of protein into the different‐sized NPs was successfully achieved and the size of protein‐encapsulated γ‐PGA‐Phe NPs was increased when protein was encapsulated.

  相似文献   

36.
The reaction of [Mo3S4(H2O)9]4+ (1) with hydrotris(pyrazolyl)borate (Tp) ligands produced [Mo3S4Tp3]Cl x 4 H2O ([3]Cl x 4 H2O) in an excellent yield. An X-ray structure analysis of [3]Cl x 4 H2O revealed that each molybdenum atom bonded to the Tp ligand. We report four salts of 3, [3]Cl x 4 H2O, [3]tof x 2 H2O, [3]PF6 x H2O, and [3]BF4 x 2 H2O in this paper. The solubility and stability of the chloride salt in organic solvents differ completely from those of the other salts. We have also prepared a new compound, [Mo3OS3Tp3]PF6 x H2O ([4]PF6 x H2O), via the reaction of [Mo3OS3(H2O)9]4+ (2) with KTp in the presence of NH4PF6. All the molybdenum atoms bonded to Tp ligand. 1H NMR signals corresponding to nine protons bonded to three pyrazole rings in one Tp were observed in a spectrum (at 253 K) of [3]BF4 x 2 H2O. It shows that cluster 3 has a 3-fold rotation axis in CD2Cl2 solution. Twenty-one 1H NMR signals corresponding to twenty-seven protons bonded to nine pyrazole rings in three Tp ligands were observed in a spectrum (at 233 K) of [4]PF6 x H2O; obviously, 4 has no 3-fold rotation axis, in contrast to 3. The short CH...mu3S distance caused large upfield chemical shifts in the 1H NMR spectra of 3 and 4. The reaction of 3 with metallic iron in CH2Cl2 produced [Mo3FeS4XTp3] (X = Cl (5), Br (6)). X-ray structure analysis of 5 has revealed the existence of a cubane-type core Mo3FeS4. Complex 3 functions as a metal-complex ligand for preparing a novel mixed-metal complex even in nonaqueous solvents. The cyclic voltammogram of 5 shows two reversible one-electron couples (E(1/2) = -1.40 and 0.52 V vs SCE) and two irreversible one-electron oxidation processes (E(pc) = 1.54 and 1.66 V vs SCE).  相似文献   
37.
Dual mineralization on a porous membrane was carried out using an electrochemical approach. The porous membrane was interposed between a pair of glass cells, and calcium chloride (CaCl2) and sodium hydrogenphosphate (Na2HPO4) solutions were separately injected into the cells. After inserting platinum electrodes into the cells, an alternating current with a sine waveform was applied for a given period of time. The resulting membrane was removed from the glass cells and rinsed with ultrapure water. The minerals formed on the membrane were analyzed by using spectroscopic methods such as scanning electron microscopy (SEM), infrared (IR) spectroscopy, and X-ray diffraction (XRD) and identified to be dicalcium phosphate and hydroxyapatite. It was noted that dicalcium phosphate formed on one side of the membrane, while hydroxyapatite was formed on the other side. Thus, dual mineralization could be successfully achieved on both sides of the porous membrane under an alternating current. This process of dual mineralization is very useful for the formation of versatile organic–inorganic hybrids and also for the regulation of the polymorphs on either side of a membrane.  相似文献   
38.
Calcium carbonate (CaCO3) formation was observed without surface modification of the organic template and in the absence of chemical additives such as macromolecules and divalent cations. Our innovative electrochemical approach that involves the use of an alternating current facilitated the crystallization of CaCO3 polymorphs on a porous polymer membrane. A solution of calcium chloride (CaCl2) and sodium carbonate (Na2CO3) was filled in a glass cell, and the porous membrane was interposed in the cell. A sine waveform of 10 Hz was applied to the platinum electrodes using a high-speed bipolar power supply. An alternating current was generated for 60 min. The crystal morphology and crystal structure of the resulting hybrid membrane were studied. In this electrochemical approach, versatile polymorphs of vaterite, aragonite, and calcite were formed on the membrane, thereby showing that the alternating current induced the formation of various polymorphs of CaCO3 on the porous membrane even in the absence of any additives.  相似文献   
39.
The stereoregular synthetic polymer isotactic polystyrene bearing partially sulfonated groups (SiPS) was used as a layer-by-layer assembled thin film for the first time. When a low molecular weight compound was employed as the pair for the alternative layer-by-layer (LbL) assembly, the frequency shift was very small using quartz crystal microbalance (QCM) analysis, whereas poly(vinylamine) (PVAm) formed an effective pair for the construction of LbL films with SiPS. When it was neutralized, SiPS was not assembled, probably due to the loss of effective polymer-polymer interactions. The ionic strength conditions revealed a slight difference of the assembly behavior on the isotactic polymer as compared to the atactic one. The assembled LbL film showed the same peaks over the range from 1141 to 1227 cm(-1) and 700 cm(-1) in the FT-IR/ATR spectra as the bulk complex of SiPS/PVAm, and the thickness on one side was calculated at 76 nm by QCM analysis. The surface roughness of the film was also observed by AFM.  相似文献   
40.
Poly(lactic acid) (PLA) particles dispersed in water were transformed into nanofibers by simply heating above the glass transition temperatures of the hydrated PLAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号