首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   9篇
  国内免费   2篇
化学   180篇
晶体学   2篇
力学   3篇
数学   2篇
物理学   18篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   9篇
  2006年   15篇
  2005年   11篇
  2004年   16篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1968年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
11.
Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences.  相似文献   
12.
13.
The bioultrasonic spectroscopy system was employed for measurements of velocity and attenuation coefficient of glucose solutions in the VHF/UHF range. The relation between the slope of the square of velocity and the relaxation parameters, and the relation between the frequency exponent on attenuation coefficient and the relaxation parameters are investigated. In order to carry out numerical calculations, a model for a single relaxation process is employed, wherein the attenuation coefficient is expressed as (A/( 1 + (f/falpha)2) + B)f2 where falpha is the attenuation relaxation frequency, and A and B are constants. The numerical calculations show that the slope of the square of the velocity is determined uniquely by the velocity relaxation frequency fv and v(infinity)2 - v(0)2 where v0 is the zero-frequency velocity and v(infinity) is the infinite-frequency velocity, and that the frequency exponent on the attenuation coefficient is determined uniquely by falpha and A/B. For experimental considerations, the velocities and the attenuation coefficients of 5, 15, and 25% concentration aqueous solutions of glucose were measured in the frequency range 20 to 700 MHz. The data for the 5 and 15% aqueous solutions can be explained using the single relaxation model. However, the data for the 25% aqueous solution suggest the existence of multirelaxation processes.  相似文献   
14.
15.
The effects of stereoregularity, temperature, and solvent on the specific recognition of syndiotactic (st)‐poly(methacrylic acid) (PMAA) in macromolecularly porous isotactic (it)‐poly(methyl methacrylate) films were investigated to give important insights into the regularity and stability of nanospaces in the it‐PMMA films as well as template polymerization. The porous it‐PMMA films were fabricated on quartz crystal microbalance (QCM) substrates via the layer‐by‐layer (LbL) assembly of it‐PMMA/st‐PMAA, plus the st‐PMAA extraction from the assembly. QCM analysis and infrared spectroscopy revealed the first case of stereocomplex formation using st‐PMAA with lower stereoregularity (rr = 73%) in the LbL films, while st‐PMAA obtained with conventional free radical polymerization (rr = 62%) was barely incorporated into the porous it‐PMMA films. The maximum st‐PMAA incorporation increased from 25 to 40 °C, but there were almost no difference between 40 and 55 °C, indicating that the it‐PMMA crystallization would also be accelerated with increasing temperature. The studies on st‐PMAA incorporation with various complexing solvents revealed that the host it‐PMMA in the porous films could only form the original stereocomplex with 2/1 unit‐molar stoichiometry (st‐PMAA/it‐PMMA) in acetonitrile/water or ethanol/water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3651–3657, 2010  相似文献   
16.
Chemical effects associated with6Li (n,α)T reaction in Lithium compounds were studied by observing a Mössbauer spectrum for the Mössbauer nuclides introduced in the lithium compounds. The large difference between the effects of lithium carbonate and oxalate was compared with the results obtained in the emission Mössbauer spectra of57Co-labelled triscarbonatocobaltate(III) and trisoxalatocobaltate(III), in which the former shows much less reducing effect on the produced57Fe species than the latter.  相似文献   
17.
Dynamics of a filament discharge in a discharge-excited XeCl excimer laser medium has been simulated for a sequence of discharge pulses (shots). In the present model a filament discharge is triggered at a microprotrusion on a cathode surface. After the first discharge initiation, a hot spot is created near the cathode, then filament develops toward the anode in the second shot. Images of the filament discharge development and its properties in a XeCl excimer laser are presented  相似文献   
18.
19.
A new kind of the thermo-sensitive and fluorescent complex of poly(N-isopropylacrylamide) (PNIPAM) and Tb(III) was synthesized by free radical polymerization, in which PNIPAM was used as a polymer ligand. The complex was characterized by using X-ray photoelectron spectroscopy (XPS), ultraviolet-visual (UV), Fourier transform infrared (FT-IR) and fluorescence spectroscopy. The results from the experiments indicated that there is a strong interaction between PNIPAM and Tb(III), leading to a decrease in the electron density of nitrogen and oxygen atoms and an increase in the electron density of Tb(III) in the PNIPAM containing Tb(III) by contrast with PNIPAM and Tb(III), respectively, meanwhile, exhibiting that the Tb(III) is mainly bonded to oxygen atoms in the polymer chain of PNIPAM and formed the complex of PNIPAM-Tb(III). After forming the PNIPAM-Tb(III) complex, the emission fluorescence intensity of Tb(III) in the PNIPAM-Tb(III) complex is significantly enhanced because the effective intramolecular energy transfer from PNIPAM to Tb(III). Especially, the emission intensity of the fluorescence peak at 547 nm can be increased as high as 145 times comparing with that of the pure Tb(III). The intramolecular energy transfer efficiency for fluorescence peak at 547 nm can reach as high as 68%. The fluorescence intensity is related the weight ratio of Tb(III) and PNIPAM in the PNIPAM-Tb(III) complex. When the weight ratio is 1.4%, the maximum fluorescence enhancement can be obtained. Nevertheless, the lower critical solution temperature of PNIPAM containing a low content of Tb(III) has not obviously changed after the formation of the complex of PNIPAM-Tb(III) by the interaction between PNIPAM and Tb(III). This novel thermosensitive and fluorescence characterization of the PNIPAM-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   
20.
We adopted laser Thomson scattering for measuring the electron density and the electron temperature of microwave plasmas produced in helium at the pressures higher than the atmospheric pressure. The electron density decreased while we observed the increase in the electron temperature with the pressure. These are reasonable results by considering the decrease in the reduced electric field, the dominant loss of electrons via three‐body recombination with helium as the third body, and the production of electrons with medium energy via heavy particle collisions at the high gas pressure. The temporal variation of the electron temperature had the rise and the fall time constants of approximately 10 ns. The rapid heating and cooling of the electron temperature are due to the fast energy transfer from electrons to helium because of the high collision frequency in the high‐pressure discharge. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号