首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   7篇
化学   109篇
晶体学   3篇
力学   2篇
综合类   1篇
数学   7篇
物理学   59篇
  2022年   6篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   8篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   16篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
51.
Two systems (salted and plasticized) of starch–chitosan blend-based electrolytes incorporated with ammonium chloride (NH4Cl) are prepared via solution cast technique. The incorporation of 25 wt% NH4Cl has maximized the room temperature conductivity of the electrolyte to (6.47?±?1.30)?×?10?7 S cm?1. Conductivity is enhanced to (5.11?±?1.60)?×?10?4 S cm?1 on addition of 35 wt% glycerol. The temperature dependence of conductivity for all electrolytes is Arrhenian, and the value of activation energy (E a ) decreases with increasing conductivity. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. The complexation between the electrolytes components is proven by Fourier transform infrared analysis. The relaxation time (t r ) for selected electrolytes is found to decrease with increasing conductivity and temperature. Conduction mechanism for the highest conducting electrolyte in salted and plasticized systems is determined by employing Jonscher’s universal power law.  相似文献   
52.
Polymer electrolyte system based on poly(vinyl alcohol) (PVA)-chitosan blend doped with ammonium bromide (NH4Br) has been prepared by solution cast method. Fourier transform infrared (FTIR) spectroscopy analysis confirms the complexation between salt and polymer host. The highest ionic conductivity obtained at room temperature is (7.68?±?1.24)?×?10?4 S cm?1 for the sample comprising of 30 wt% NH4Br. X-ray diffraction (XRD) patterns reveal that PVA-chitosan with 30 wt% NH4Br exhibits the most amorphous structure. Thermogravimetric analysis (TGA) reveals that the electrolytes are stable until ~260 °C. The conductivity variation can also be explained by field emission scanning electron microscopy (FESEM) study. Dielectric properties of the electrolytes follow non-Debye behavior. The conduction mechanism of the highest conducting electrolyte can be represented by the correlated barrier hopping (CBH) model. From linear sweep voltammetry (LSV) result, the highest conducting electrolyte is electrochemically stable at 1.57 V.  相似文献   
53.
54.
In the present study, the potential of methyl cellulose (MC) as biopolymer electrolyte (BPE) will be studied extensively by means of conductivity and the conduction mechanism. BPE films based on MC doped with ammonium iodide (NH4I) salt were prepared by solution-casting method. X-ray diffraction (XRD) explains that the conductivity enhancement of the electrolytes is affected by the degree of crystallinity. Field emission scanning electron microscopy (FESEM) analysis shows the difference in the electrolyte’s surface with respect to NH4I. On addition of 40 wt.% of NH4I, the highest room temperature conductivity of (5.08?±?0.04)?×?10?4 S cm?1 was achieved. The temperature dependence relationship for the salted electrolyte was found to obey the Arrhenius rule where R2 ~1 from which the activation energy (E a) was evaluated. The dielectric study analyzed using complex permittivity ε* for the sample with the highest conductivity at elevated temperature shows a non- Debye behavior. These salted electrolytes follow the correlated barrier hopping (CBH) model.  相似文献   
55.
Aslan K  Geddes CD 《The Analyst》2008,133(11):1469-1480
In this timely review, we summarize recent work on ultra-fast and sensitive bioassays based on microwave heating, and provide our current interpretation of the role of the combined use of microwave energy and plasmonic nanostructures for applications in rapid clinical and bioagent diagnostics. The incorporation of microwave heating into plasmonic nanostructure-based bioassays brings new advancements to diagnostic tests. A temperature gradient, created by the selective heating of water in the presence of plasmonic nanostructures, results in an increased mass transfer of target biomolecules towards the biorecognition partners placed on the plasmonic nanostructures, enabling diagnostic tests to be completed in less than a minute, and in some cases only a few seconds, by further microwave heating. The diagnostic tests can also be run in complex biological samples, such as human serum and whole blood.  相似文献   
56.
On the basis of electronic structure calculations and molecular orbital analysis, we offer a physical explanation of the observed large decrease (0.9 eV) in ionization energies (IE) in going from hydroxymethyl to hydroxyethyl radical. The effect is attributed to hyperconjugative interactions between the sigma CH orbitals of the methyl group in hydroxyethyl, the singly occupied p orbital of carbon, and the lone pair p orbital of oxygen. Analyses of vertical and adiabatic IEs and hyperconjugation energies computed by the natural bond orbital (NBO) procedure reveal that the decrease is due to the destabilization of the singly occupied molecular orbital in hydroxyethyl radical as well as structural relaxation of the cation maximizing the hyperconjugative interactions. The stabilization is achieved due to the contraction of the CO and CC bonds, whereas large changes in torsional angles bear little effect on the total hyperconjugation energies and, consequently, IEs.  相似文献   
57.
58.
Aslan K  Malyn SN  Geddes CD 《The Analyst》2007,132(11):1112-1121
We describe an exciting opportunity for Metal-Enhanced Fluorescence (MEF)-based surface assays using an angular-ratiometric approach to the observed enhanced emission from fluorophores in close proximity to silver colloids deposited on glass substrates. This approach utilizes the radiationless energy transfer (coupling) between the excited states of the fluorophore and the induced surface plasmons of the silver colloids, and the subsequent angular-dependent fluorescence emission from the fluorophore-silver colloid system. Since MEF is related to surface plasmons' ability to scatter light, angular-dependent light scattering from three different silvered surfaces and glass substrates were investigated using two common excitation angles, 45 and 90 degrees . The scattered light from silvered surfaces with a high loading was observed at wider angles on both sides of the glass substrates, while forward scattering (from the back of the glass) was dominant for the silvered surfaces with low loading, as explained by both Mie and Rayleigh theories. When silver colloids were placed between the fluorophore and glass interface, the coupled fluorescence emission through the higher refractive index glass (and in air), increased in an angular-dependent fashion, following closely the angular-dependent light scattering pattern of the silver colloids themselves. Similar observations for fluorescence emission from fluorophores deposited onto glass surfaces alone were made, but at much narrower angles on both sides of the fluorophore-glass interface and were simply explained by Lambert's cosine law. As the loading of silver on glass was increased, the enhanced fluorescence emission was observed at wider angles (towards 0 and 180 degrees ) at both sides of the silvered surfaces. Glass surfaces without silver colloids were used as control samples to demonstrate the benefits of MEF for enhancing fluorescence signatures in an elegant, angular-dependent fashion. Finally, the utility of the angular-dependent MEF phenomenon for intensity-based angular-ratiometric surface assays is demonstrated.  相似文献   
59.
In this Rapid Communication, we report the first observation of Metal-Enhanced singlet oxygen generation (ME1O2). Rose Bengal in close proximity to Silver Island Films (SiFs) can generate more singlet oxygen, a three-fold increase observed, as compared to an identical glass control sample but containing no silver. The enhanced absorption of the photo-sensitizer, due to coupling to silver surface plasmons, facilitates enhanced singlet oxygen generation. The singlet oxygen yield can potentially be adjusted by modifying the choice of MEF (Metal-Enhanced Fluorescence) & MEP (Metal Enhance Phosphorescence) parameters, such as distance dependence for plasmon coupling and wavelength emission of the coupling fluorophore. This is a most helpful observation in understanding the interactions between plasmons and lumophores, and this approach may well be of significance for singlet oxygen based clinical therapy.  相似文献   
60.
In this study, substituted 2H-indazolo[2,1-b]phthalazine-1,6,11-trione compounds ( 4a–d ) obtained via one-pot three-component condensation reaction of aromatic aldehydes, cyclic 1,3-dione, and phthalhydrazide in ethanol catalyzed by Y(OTf)3 showed satisfactory inhibitory effects against some important enzymes. Also, these molecules had Ki values in the row of 185.92 ± 36.03-294.82 ± 50.76 nM vs carbonic anhydrase I (CA I), 204.93 ± 46.90-374.10 ± 83.63 nM against human CA II, 937.16 ± 205.82-1021.83 ± 193.66 nM against α-glycosidase (α-Gly), respectively. For cholinesterase enzymes, the Ki values were found in the range of 47.26 ± 9.62-72.05 ± 19.47 nM against acetylcholinesterase (AChE) and 65.03 ± 9.88-102.83 ± 25.04 nM against butyrylcholinesterase (BChE), respectively. The inhibition effects of these compounds against enzymes whose name are AChE, BChE, α-Gly, hCA I, and hCA II, were compared with control molecules like tacrine, acarbose, and acetazolamide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号