首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2163篇
  免费   68篇
  国内免费   6篇
化学   1553篇
晶体学   112篇
力学   56篇
数学   91篇
物理学   425篇
  2023年   16篇
  2022年   48篇
  2021年   40篇
  2020年   38篇
  2019年   46篇
  2018年   35篇
  2017年   59篇
  2016年   84篇
  2015年   41篇
  2014年   58篇
  2013年   197篇
  2012年   111篇
  2011年   135篇
  2010年   88篇
  2009年   72篇
  2008年   117篇
  2007年   95篇
  2006年   96篇
  2005年   73篇
  2004年   59篇
  2003年   50篇
  2002年   52篇
  2001年   29篇
  2000年   31篇
  1999年   25篇
  1998年   14篇
  1997年   15篇
  1996年   19篇
  1995年   21篇
  1994年   24篇
  1993年   19篇
  1992年   23篇
  1991年   25篇
  1990年   15篇
  1989年   17篇
  1988年   15篇
  1987年   19篇
  1986年   23篇
  1985年   17篇
  1984年   27篇
  1983年   21篇
  1982年   28篇
  1981年   30篇
  1980年   22篇
  1979年   23篇
  1978年   20篇
  1977年   11篇
  1976年   13篇
  1975年   18篇
  1973年   16篇
排序方式: 共有2237条查询结果,搜索用时 31 毫秒
981.
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported.  相似文献   
982.
We report herein thermally responsive elastin-like polypeptides (ELPs) in a linear AB diblock architecture with an N-terminal peptide ligand that self-assemble into spherical micelles when heated slightly above body temperature. A series of 10 ELP block copolymers (ELP(BC)'s ) with different molecular weights and hydrophilic-to-hydrophobic block ratios were genetically synthesized by recursive directional ligation. The self-assembly of these polymers from unimers into micelles was investigated by light scattering, fluorescence spectroscopy, and cryo-TEM. These ELP(BC)'s undergo two phase transitions as a function of solution temperature: a unimer-to-spherical micelle transition at an intermediate temperature and a micelle-to-bulk aggregate transition at a higher temperature when the hydrophilic-to-hydrophobic block ratio is between 1:2 and 2:1. The critical micelle temperature is controlled by the length of the hydrophobic block, and the size of the micelle is controlled by both the total ELP(BC) length and hydrophilic-to-hydrophobic block ratio. These polypeptide micelles display a critical micelle concentration in the range 4-8 microM demonstrating the high stability of these structures. These studies have also identified a subset of ELP(BC)'s bearing terminal peptide ligands that are capable of forming multivalent spherical micelles that present multiple copies of the ligand on their corona in the clinically relevant temperature range 37-42 degrees C and target cancer cells. These ELP(BC)'s may be useful for drug targeting by thermally triggered multivalency. More broadly, the design rules uncovered by this study should be applicable to the design of other thermally reversible nanoparticles for diverse applications in medicine and biology.  相似文献   
983.
Patel BA 《The Analyst》2008,133(4):516-524
Serotonin (5-HT) and melatonin (MEL) are well known neurotransmitters and paracrine signalling molecules. Both compounds are present in enterochromaffin (EC) cells in the mucosa of the gastrointestinal tract and are thought to play a role in controlling gut motility. To date there are no real-time analytical methods for the detection of these two molecules and it is not clear if MEL is actually released from the EC cells. In this paper, I used boron-doped diamond (BDD) microelectrodes to record 5-HT and MEL overflow from EC cells in the mucosa of rabbit ileum. The BDD microelectrode was extremely stable and sensitive for measurements of both compounds when assessed using differential pulse voltammetry (DPV) and flow injection analysis (FIA) using amperometric detection. MEL release was detected in the mucosa, where it is most likely from the EC cells. Mechanical stimulation of individual villi increased 5-HT but not MEL overflow. Application of the serotonin transporter (SERT) inhibitor, fluoxetine, elevated the 5-HT but not the MEL signal. Differences in the amounts of the two gastrointestinal compounds released and the mechanism of which they are released will provide insights to the physiology of the EC cell and disease states.  相似文献   
984.
A selective, precise, and accurate high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of L-dopa in Mucuna pruriens seed extract and its formulations. The method involves densitometric evaluation of L-dopa after resolving it by HPTLC on silica gel plates with n-butanol-acetic acid-water (4.0+1.0+1.0, v/v) as the mobile phase. Densitometric analysis of L-dopa was carried out in the absorbance mode at 280 nm. The relationship between the concentration of L-dopa and corresponding peak areas was found to be linear in the range of 100 to 1200 ng/spot. The method was validated for precision (inter and intraday), repeatability, and accuracy. Mean recovery was 100.30%. The relative standard deviation (RSD) values of the precision were found to be in the range 0.64-1.52%. In conclusion, the proposed TLC method was found to be precise, specific and accurate and can be used for identification and quantitative determination of L-dopa in herbal extract and its formulations.  相似文献   
985.
A sensitive, selective, precise, and stability-indicating HPTLC method for analysis of moclobemide in the bulk drug and in formulations has been established and validated. Aluminium TLC plates precoated with silica gel 60 F254 were used with benzene–methanol–40% ammonia 7:3:0.1 (v/v) as mobile phase. Densitometric analysis was performed in absorbance mode at 238 nm. Compact bands were obtained for moclobemide (R F 0.67 ± 0.02; n = 6). The drug was subjected to acidic and alkaline hydrolysis, oxidation, dry heat treatment, and photodegradation. The drug undergoes degradation under acidic, basic, and oxidising conditions. The degradation products were well resolved from the pure drug with significantly different R F values, so the method can be regarded as stability-indicating. Response to moclobemide was a linear function of amount in the range 50–600 ng per band, with a correlation coefficient, r 2, of 0.9967 ± 0.51. LOD and LOQ, determined experimentally, were 10 and 30 ng per band, respectively. Statistical analysis proves the method is repeatable and specific for analysis of moclobemide. The method was used to investigate the kinetics of alkaline degradation. The Arrhenius plot was constructed and the activation energy calculated.  相似文献   
986.
A selective, precise, and accurate high-performance thin-layer chromatographic (HPTLC) method has been proposed for the analysis of conessine in Holarrhena antidysenterica. The method involves visible densitometric evaluation of conessine resolving it by HPTLC on aluminium-based silica gel plates. For visible densitometric evaluation, peak areas were recorded at 520 nm after the resolved bands were derivatized with Dragendorff's reagent and then sprayed with a 10% solution of aqueous sodium nitrite which resulted in reddish brown color. The correlation between the concentration and area was found to be linear within the range of 10 to 60 ng/spot. The method was validated for precision (interday and intraday), repeatability, and accuracy. Mean recovery for conessine was 98.34-100.25%. The method was applied for the quantitation of conessine in Kurchi. The proposed HPTLC method was found to be precise, specific, sensitive, and accurate and can be used for routine analysis of Kurchi.  相似文献   
987.
This paper describes validated high-performance column liquid chromatographic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for simultaneous estimation of acetylsalicylic acid (ASA) and clopidogrel bisulfate (CLP) in pure powder and formulations. The HPLC separation was achieved on a Nucleosil C8 column (150 mm length x 4.6 mm id, 5 microm particle size) using acetonitrile-phosphate buffer, pH 3.0 (55 + 45, v/v) mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetate-methanol-toluene-glacial acetic acid (5.0 + 1.0 + 4.0 + 0.1, v/v/v/v) mobile phase. Quantitation was achieved with UV detection at 235 nm over the concentration range 4-24 microg/mL for both drugs, with mean recoveries of 99.98 +/- 0.28 and 100.16 +/- 0.66% for ASA and CLP, respectively, using the HPLC method. Quantitation was achieved with UV detection at 235 nm over the concentration range of 400-1400 ng/spot for both drugs, with mean recoveries of 99.93 +/- 0.55 and 100.21 +/- 0.83% for ASA and CLP, respectively, using the HPTLC method. These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of ASA and CLP in pure powder and formulations.  相似文献   
988.
[structure: see text] Attractive interactions between substituted arenes in the parallel displaced configuration have been quantitatively studied using triptycene-derived molecular conformational reporters. Charge-transfer bands are observed for models where the interactions are between strong donor and acceptors. Substituent effects on the strength of the aromatic interaction follow opposite trends for strongly electron-deficient arenes and mildly perturbed arenes. The free energy of interactions for models with strong electron donors and acceptors does not follow a linear correlation in the Hammett plot. Electrostatic models alone do not account for the nonlinearity of the free energy-substituents plot.  相似文献   
989.
Tracking of individual fish targets using a split-beam echosounder is a common method for investigating fish behavior. When mounted on a floating platform like a ship or a buoy, the transducer movement often complicates the process. This paper presents a framework for tracking single targets from such a platform. A filter based on the correlated fish movements between pings is developed to estimate the platform movement, and an extended Kalman filter is used to combine the split-beam measurements and the platform-position estimates. Different methods for gating and data association are implemented and tested with respect to data-association errors, using manually tracked data from a free-floating buoy as a reference. The data association was improved by utilizing the estimated velocity for each track to predict the location of the next observation. The data association was more robust when estimates of platform tilt/roll were used. Other techniques to estimate position and velocity, like linear regression and smoothing splines, were implemented and tested on a simulated data set. The platform-state estimation improved the estimates for methods like the Kalman filter and a smoothing spline with cross validation, but not for robust methods like linear regression and smoothing spline with a fixed degree of smoothing.  相似文献   
990.
The h(c)((1)P(1)) state of charmonium has been observed in the reaction psi(2S) --> pi(0)h(c) --> (gammagamma)(gammaeta(c)) using 3.08 x10(6) psi(2S) decays recorded in the CLEO detector. Data have been analyzed both for the inclusive reaction, where the decay products of the eta(c) are not identified, and for exclusive reactions, in which eta(c) decays are reconstructed in seven hadronic decay channels. We find M(h(c)) = 3524.4 +/- 0.6 +/- 0.4 MeV which corresponds to a hyperfine splitting DeltaM(hf)(1P) triple-bond pi(0)h(c)) x B(h(c) --> gammaeta(c)) = (4.0 +/- 0.8 +/- 0.7) x 10(-4).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号