首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522220篇
  免费   5352篇
  国内免费   1850篇
化学   278214篇
晶体学   8563篇
力学   23476篇
综合类   19篇
数学   57894篇
物理学   161256篇
  2020年   4090篇
  2019年   4541篇
  2018年   5426篇
  2017年   5402篇
  2016年   8587篇
  2015年   5672篇
  2014年   8744篇
  2013年   23291篇
  2012年   17456篇
  2011年   21647篇
  2010年   14791篇
  2009年   14922篇
  2008年   19723篇
  2007年   19567篇
  2006年   18559篇
  2005年   16851篇
  2004年   15496篇
  2003年   13720篇
  2002年   13469篇
  2001年   15800篇
  2000年   12133篇
  1999年   9403篇
  1998年   7598篇
  1997年   7513篇
  1996年   7257篇
  1995年   6638篇
  1994年   6397篇
  1993年   6253篇
  1992年   7130篇
  1991年   7135篇
  1990年   6718篇
  1989年   6671篇
  1988年   6713篇
  1987年   6577篇
  1986年   6223篇
  1985年   8513篇
  1984年   8674篇
  1983年   6983篇
  1982年   7361篇
  1981年   7204篇
  1980年   6890篇
  1979年   7279篇
  1978年   7414篇
  1977年   7444篇
  1976年   7333篇
  1975年   6814篇
  1974年   6805篇
  1973年   6820篇
  1972年   4623篇
  1971年   3694篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
The effect of space- and time-dependent random mass density, velocity, and pressure fields on frequencies and amplitudes of acoustic waves is considered by means of the analytical perturbative method. The analytical results, which are valid for weak fluctuations and long wavelength sound waves, reveal frequency and amplitude alteration, the effect of which depends on the type of random field. In particular, the effect of a random mass density field is to increase wave frequencies. Space-dependent random velocity and pressure fields reduce wave frequencies. While space-dependent random fields attenuate wave amplitudes, their time-dependent counterparts lead to wave amplification. In another example, sound waves that are trapped in the vertical direction but are free to propagate horizontally are affected by a space-dependent random mass density field. This effect depends on the direction along which the field is varying. A random field, which varies along the horizontal direction, does not couple vertically standing modes but increases their frequencies and attenuates amplitudes. These modes are coupled by a random field which depends on the vertical coordinate, but the dispersion relation remains the same as in the case of the deterministic medium.  相似文献   
32.
33.
A one-dimensional bulk reaction model for the oxidation of nickeltitanium is formulated, with preferential oxidation of titaniumbeing included. The modelling is directed at the better understandingof the dominant mechanisms involved in the oxidation processand their significance for the biocompatibility of the alloy.Two different regimes for the relative diffusivities of oxygenand the metals are investigated. By assuming fast bulk reactions,different asymptotic structures emerge in different parameterregimes and the resulting models take the form of moving boundaryproblems. Different profiles of nickel concentration are obtained:in particular a nickel-rich layer (observed in practice) ispresent below the oxide/metal interface for the case when oxygenand the metals diffuse at comparable rates.  相似文献   
34.
Beloshapka  V. K. 《Mathematical Notes》2004,75(3-4):475-488
In previous papers by the present author, a machinery for calculating automorphisms, constructing invariants, and classifying real submanifolds of a complex manifold was developed. The main step in this machinery is the construction of a “nice” model surface. The nice model surface can be treated as an analog of the osculating paraboloid in classical differential geometry. Model surfaces suggested earlier possess a complete list of the desired properties only if some upper estimate for the codimension of the submanifold is satisfied. If this estimate fails, then the surfaces lose the universality property (that is, the ability to touch any germ in an appropriate way), which restricts their applicability. In the present paper, we get rid of this restriction: for an arbitrary type (n,K) (where n is the dimension of the complex tangent plane, and K is the real codimension), we construct a nice model surface. In particular, we solve the problem of constructing a nondegenerate germ of a real analytic submanifold of a complex manifold of arbitrary given type (n,K) with the richest possible group of holomorphic automorphisms in the given class.  相似文献   
35.
The title compound is a centrosymmetric dimer with each cadmium in a distorted CdS5 square pyramidal geometry. The Cd–S bond distances range from 2.5626(11) to 2.8459(11) Å. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
36.
Hetero‐bimetallic Fe(II) alkoxide/aryloxides were evaluated as initiators for the ring‐opening polymerization of rac‐lactide. [(THF)NaFe(OtBu)3]2 ( 1 ) and [(THF)4Na2Fe(2,6‐diisopropylphenolate)4] ( 2 ) (THF = tetrahydrofuran) both polymerized lactide efficiently at room temperature, with complex 1 affording better control over the molecular weight parameters of the resultant polymer. At conversions below 70%, a linear increase in molecular weight with conversion was observed, indicative of a well‐controlled polymerization process. Complex 2 is the first example of a dianionic Fe(II) alkoxide and has been structurally characterized to reveal a distorted square planar FeO4 array in which both Na counterions bridge two aryloxide ligands and are further complexed by two THF ligands. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3798–3803, 2003  相似文献   
37.
We study the infrared emission at 1.54 μm of an organolanthanide complex, Er(III)-tetraphenylporphyrin [Er(TPP)acac], both as a result of direct optical excitation and via energy transfer from host π-conjugate polymers of type poly(arylene–ethynylene) [PAE]. In the first case, the emission of the neat complex is characterized in inert transparent materials and a value of the quantum yield at 1.54 μm φIR=4×10−4 is measured. Then, fluorescence resonance transfer is investigated in blends of Er(TPP)acac with PAEs by monitoring the quenching of the polymer fluorescence along with the enhancement of both the visible emission of the ligand and the near-infrared band of Er3+. These different procedures allow a detailed analysis of the transfer efficiency within a specific implementation of the Förster model for polymeric donors. The experimental values of the critical radius R0, ranging from 1.3 to 2.5 nm for the different blends, are in good agreement with theory for a wide interval of the physical and spectroscopic parameters. This suggests that other mechanisms for excitation transfer do not play a significant role in these materials.  相似文献   
38.
The charge transport properties of polymer matrix–carbon black composites are investigated in this study. Direct current conductivity is examined with varying parameters: the temperature and the conductive filler content. Conductivity data are analyzed by means of percolation theory, and both percolation threshold and critical exponent are determined at each of the examined temperatures. The temperature dependence of conductivity and the agreement of experimental results with the variable range hopping model reveal hopping conduction as the predominant transport mechanism, below and in the vicinity of the critical concentration of carbon black particles. At higher concentrations, the contribution of hopping transport to the overall conductivity is reduced and a balance between hopping and conduction via geometrical contact occurs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2535–2545, 2007  相似文献   
39.
40.
We have simultaneously used adsorption isotherm volumetry and Fourier transform infrared spectroscopy in order to take the investigations on amorphous ice structure a step further, especially concerning porosity and annealing-induced modifications. We have studied surface reorganization during annealing and found that the number of surface sites decreases before crystallization, their relative ratios being different for amorphous and crystalline ice. We also present results confirming that ice can have a large specific surface area and nevertheless be non-microporous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号