首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   11篇
化学   189篇
晶体学   3篇
力学   10篇
数学   3篇
物理学   67篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   11篇
  2008年   7篇
  2007年   15篇
  2006年   19篇
  2005年   13篇
  2004年   16篇
  2003年   10篇
  2002年   11篇
  2001年   9篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
161.
Assemblies of heterodimeric particles were prepared through selective coupling of two kinds of spherical silica particles of different sizes by connection with gold nanoparticles attached anisotropically to the particles.  相似文献   
162.
Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by n-alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the C2F5 fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the n-alkane guest vapors, respectively. Furthermore, the n-alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the n-alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the n-alkane guest vapor.

Pillar[5]arenes with C2F5 substituents showed reversible amorphous–crystal transitions by uptake and release of n-alkane vapors. The amorphous–crystal transitions triggered macroscopic property change such as water repellency.  相似文献   
163.
Spatial arrangement of multiple planar chromophores is an emerging strategy for molecule-based chiroptical materials via easy and systematic synthesis. We attached five pyrene planes to a chiral macrocycle, pillar[5]arene, producing a set of chiroptical molecules in which pyrene-derived absorption and emission were endowed with dissymmetry by effective transfer of chiral information. The chiroptical response was dependent on linker structures and substituted patterns because of variable interactions between pyrene units. One of these hybrids showed larger dissymmetry factor and response wavelength (glum = 7.0 × 10−3 at ca. 547 nm) than reported pillar[5]arene-based molecules using the pillar[5]arene cores as parts of photo-responsive π-conjugated units.

Chirality of a C5-symmetric pillar[5]arene was effectively transmitted to pyrene arrays in hybrid molecules. The pyrenes showed achiral monomer fluorescence and circularly polarized excimer emission.  相似文献   
164.
Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2[ReN(CN)4] ( 1 ) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1 . Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.  相似文献   
165.
Cell membranes contain lateral systems that consist of various lipid compositions and actin cytoskeleton, providing two-dimensional (2D) platforms for chemical reactions. However, such complex 2D environments have not yet been used as a synthetic platform for artificial 2D nanomaterials. Herein, we demonstrate the direct synthesis of 2D coordination polymers (CPs) at the liquid-cell interface of the plasma membrane of living cells. The coordination-driven self-assembly of networking metal complex lipids produces cyanide-bridged CP layers with metal ions, enabling “pseudo-membrane jackets” that produce long-lived micro-domains with a size of 1–5 μm. The resultant artificial and visible phase separation systems remain stable even in the absence of actin skeletons in cells. Moreover, we show the cell application of the jackets by demonstrating the enhancement of cellular calcium response to ATP.  相似文献   
166.
Colloidal gold (Au) nanoparticles were prepared and successfully loaded on titanium(IV) oxide (TiO(2)) without change in the original particle size using a method of colloid photodeposition operated in the presence of a hole scavenger (CPH). The prepared Au nanoparticles supported on TiO(2) showed strong photoabsorption at around 550 nm due to surface plasmon resonance (SPR) of Au and exhibited a photocatalytic activity in mineralization of formic acid in aqueous suspensions under irradiation of visible light (>ca. 520 nm). A linear correlation between photocatalytic activity and the amount of Au loaded, that is, the number of Au nanoparticles, was observed, indicating that the activity of Au/TiO(2) plasmonic photocatalysts can be controlled simply by the amount of Au loading using the CPH method and that the external surface area of Au nanoparticles is a decisive factor in mineralization of formic acid under visible light irradiation. Very high reaction rates were obtained in samples with 5 wt % Au or more, although the rate tended to be saturated. The CPH method can be widely applied for loading of Au nanoparticles on various TiO(2) supports without change in the original size independent of the TiO(2) phase. The rate of CO(2) formation also increased linearly with increase in the external surface area of Au. Interestingly, the TiO(2) supports showed different slopes of the plots. The slope is important for selection of TiO(2) as a material supporting colloidal Au nanoparticles.  相似文献   
167.
Inclusion of thiourea guest molecules in the tridimensional spin crossover porous coordination polymers {[Fe(pyrazine)[M(CN)(4)]} (M = Pd, Pt) leads to novel clathrates exhibiting unprecedented large thermal hysteresis loops of ca. 60 K wide centered near room temperature.  相似文献   
168.
A small amount of an oligomeric hindered amine light stabilizer (HALS) (Adekastab LA-68LD) in polypropylene (PP) materials was directly determined by solid sampling matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using an internal standard method. First the matrix reagent (dithranol), 20 mg, and the empirically selected internal standard, angiotensin I (MW = 1296.5), 5 microg, were premixed in the solid state. The matrix mixture was then co-ground with the PP sample containing the HALS in liquid nitrogen using a freezer mill. The powdered sample mixture was spotted on the sample plate, suspended in ion-exchanged water, dried to adhere on the plate, and subjected to MALDI-MS. Three series of the HALS components accompanied by the oxidized species were clearly observed as their molecular ions (M*+)) along with that of the internal standard in the mass spectra. A fairly good linear relationship (R2 = 0.9991) with a relative standard deviation of ca. 11% was observed between the relative peak intensities of the HALS components and the HALS contents ranging from 0.1-2.5 wt%, which could be used as the calibration line to determine the HALS content in PP composites directly by MALDI-MS. The UV-exposed PP composite samples were evaluated by this method to interpret the photostabilizing action of HALS in the PP materials based on the observed change in the relative abundances of the original and oxidized HALS components as a function of UV-exposure time.  相似文献   
169.
Size-selective photoetching was applied to silica-coated cadmium selenide (SiO2/CdSe) nanoparticles to precisely control their photoluminescence properties. The absorption spectra of CdSe was blue-shifted by irradiation of monochromatic light, and finally, the absorption onset agreed with the wavelength of irradiation light, indicating that CdSe particles were photoetched to smaller ones until the irradiated photons were not absorbed by the photoetched particles and that the SiO2 shell layer surrounding the CdSe core prevented coalescence between the photoetched particles. Although as-prepared SiO2/CdSe did not exhibit photoluminescence, the application of size-selective photoetching to SiO2/CdSe resulted in the development of the band gap emission, with the degree being enhanced with progress of the photoetching. The peak wavelength of photoluminescence decreased with a decrease in the wavelength used for the photoetching, so that the luminescence color could be tuned between red and blue. Partial photoetching of SiO2/CdSe nanoparticle films produced intense band gap emission of CdSe at the photoetched area, while the remainder of the SiO2/CdSe films did not exhibit detectable photoluminescence, resulting in the formation of a clear photoluminescence image under UV irradiation. This technique makes it possible to produce a multicolored photoluminescence image by irradiation with monochromatic lights having various wavelengths using a single source material.  相似文献   
170.
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号