首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   7篇
  国内免费   2篇
化学   275篇
晶体学   6篇
力学   10篇
数学   30篇
物理学   69篇
  2024年   4篇
  2023年   10篇
  2022年   13篇
  2021年   16篇
  2020年   21篇
  2019年   15篇
  2018年   15篇
  2017年   19篇
  2016年   15篇
  2015年   6篇
  2014年   18篇
  2013年   25篇
  2012年   29篇
  2011年   30篇
  2010年   16篇
  2009年   15篇
  2008年   16篇
  2007年   20篇
  2006年   16篇
  2005年   5篇
  2004年   9篇
  2003年   14篇
  2002年   8篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1981年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有390条查询结果,搜索用时 453 毫秒
71.
Uricase purified from 20-day-old leaves of cowpea was immobilized on to epoxy resin membrane with 80% retention of initial activity of free enzyme and a conjugation yield of 0.056 mg/cm2. The uricase epoxy resin bioconjugate membrane was mounted over the sensing part of the combined electrode of ‘Aqualytic’ dissolved O2 (DO) meter to construct a uric acid biosensor. The biosensor measures the depletion of dissolved O2 during the oxidation of uric acid by immobilized uricase, which is directly proportional to uric acid concentration. The biosensor showed optimum response within 10-12 s at a pH 8.5 and 35 °C. A linear relationship was found between uric acid concentration from 0.025 to 0.1 mM and O2 (mg/l) consumed. The biosensor was employed for measurement of uric acid in serum. The mean value of uric acid in serum was 4.92 mg/dl in apparently healthy males and 3.11 mg/dl in apparently healthy females. The mean analytic recoveries of added uric acid in reaction mixture (8.9 and 9.8 mg/dl) were 93.6 ± 2.34 and 87.18 ± 3.17% respectively. The within and between batch CVs were <6.5 and <5.0%, respectively. The serum uric acid values obtained by present method and standard enzymic colorimetric method, showed a good correlation (r = 0.996) and regression equation being y = 0.984x + 0.0674. Among the various metabolites tested only, glucose (11%), urea (38%), NaCl (25%) and cholesterol (13%) and ascorbic acid (56%) caused decrease, while, MgSO4 and CaCl2 had no effect on immobilized enzyme. The enzyme electrode showed only 32% decrease during its use for 100 times over a period of 60 days at 4 °C.  相似文献   
72.
Magnetic and dielectric measurements confirm the multiferroic nature of LuMnO3. Raman spectra of LuMnO3 have been recorded in the 77–800 K range covering both the antiferromagnetic transition at 90 K and the ferroelectric–paraelectric transition at 750 K. The changes in the phonon modes frequencies and band-widths indicate the presence of phonon–spin coupling in the antiferromagnetically ordered phase. The ferroelectric–paraelectric transition is accompanied by the broadening and disappearance of many of the phonon modes. Some of the phonon modes also show anomalies at the ferroelectric transition.  相似文献   
73.
Acetalization of glycerol with various aldehydes has been carried out using mesoporous MoO3/SiO2 as a solid acid catalyst. A series of MoO3/SiO2 catalysts with varying MoO3 loadings (1–20 mol%) were prepared by sol–gel technique using ethyl silicate-40 and ammonium heptamolybdate as silica and molybdenum source respectively. The sol–gel derived samples were calcined at 500 °C and characterized using various physicochemical characterization techniques. The XRD of the calcined samples showed the formation of amorphous phase up to 10 mol% MoO3 loading and at higher loading of crystalline α-MoO3 on amorphous silica support. TEM analyses of the materials showed the uniform distribution of MoO3 nanoparticles on amorphous silica support. Raman spectroscopy showed the formation of silicomolybdic acid at low Mo loading and a mixture of α-MoO3 and polymolybdate species at high Mo loadings. Moreover the Raman spectra of intermediate loading samples also suggest the presence of β-MoO3. Acetalization of glycerol with benzaldehyde was carried out using series of MoO3/SiO2 catalysts with varying MoO3 loadings (1–20 mol%). Among the series, MoO3/SiO2 with 20 mol% MoO3 loadings was found to be the most active catalyst in acetalization under mild conditions. Maximum conversion of benzaldehyde (72%) was obtained in 8 h at 100 °C with 60% selectivity for the six-membered acetal using 20% MoO3/SiO2. Interestingly with substituted benzaldehydes under same reaction conditions the conversion of aldehydes decreased with increase in selectivity for six-membered acetals. These results indicate the potential of this catalyst for the acetalization of glycerol for an environmentally benign process.  相似文献   
74.
Recently measured inelastic X-ray spectra (IXS) of detailed coherent dynamical structure factor S(κ, ω) and hence the equilibrium collective dynamics, of the lightest liquid alkali metal, lithium at 475 K, have been successfully explained using the modified microscopic theory of the collective dynamics of a simple liquid, in a huge wave-vector, κ, range: 1.4 nm?1  κ  110.0 nm?1, is the linear momentum transfer. The role of single particle motion in the collective dynamics of the liquid changes from diffusive for smaller values of wave-vector, κ < 21 nm?1 to that of a free particle for higher κ-values, 21 nm?1  κ  110 nm?1. The quantum correction due to detailed balance condition in S(κ, ω) for liquid Li, whose dynamics, unlike that of quantum liquid 4He, is essentially classical, yields results in better agreement with the corresponding experimental S(κ, ω) and the quantum correction becomes significant for higher values of κ and ω. The wave-vector dependent variation of longitudinal viscosity, ηl, is in good agreement with the corresponding results obtained from memory function approach. The wave-vector dependent variation of single characteristic relaxation time lies in between the variation of two relaxation times of memory function approach.  相似文献   
75.
Spatially and temporally resolved energy-dispersive EXAFS (EDE) has been utilised in situ to study supported Rh nanoparticles during CO oxidation by O2 under plug-flow conditions. Three distinct phases of Rh supported upon Al2O3 were identified by using EDE at the Rh K-edge during CO oxidation. Their presence and interconversion are related to the efficiency of the catalysts in oxidising CO to CO2. A metallic phase is only found at higher temperatures (>450 K) and CO fractions (CO/O2 > 1); an oxidic phase resembling Rh2O3 dominates the active catalyst under oxygen-rich conditions. Below about 573 K, and in CO-rich environments, high proportions of isolated Rh(I)(CO)2 species are found to co-exist with metallic Rh nanoparticles. Alongside these discrete situations a large proportion of the active phase space comprises small Rh cores surrounded by layers of active oxide. Confinement of Rh to nanoscale domains induces structural lability that influences catalytic behaviour. For CO oxidation over Rh/Al2O3 there are two redox phase equilibria alongside the chemistry of CO and O adsorbed upon extended Rh surfaces.  相似文献   
76.
The organic diammonium salt N,N′-dibenzyl-N,N,N′,N′-tetramethylethylenediammonium dibromide dihydrate, (dbtmen)Br2.2H2O (1), was prepared by the reaction of N,N,N′,N′-tetramethyl-ethylenediamine (tmen) with benzyl bromide.1 crystallizes in the triclinic space group with the following unit cell dimensions for C20H34Br2N2O2 (M = 494.31):a = 8.6672(6) ?,b = 11.7046(8) ?,c = 11.7731(8) ?, α = 76.988(8)°, β = 88.978(8)°, γ= 76.198(8)γ,V= 1129.26(13) ?3, Z=2. Three components, namely the (dbtmen)2+ dication, two bromide anions and two crystal water molecules constitute the structural arrangement of1. H2O molecules are linked to bromide anions via O-H...Br hydrogen bonding interactions resulting in the formation of a four-membered O2Br2 cyclic dibromide. The O2Br2 units and the dications are arranged as alternating layers extending in the crystallographicbc plane. The arrangement of anions and cations may be viewed as a typical lamellar structure. The crystal water molecules can be removed by heating 1 at 140°C and the anhydrous dibromide thus formed can be fully rehydrated as evidenced by IR spectra and X-ray powder patterns. Dedicated to Prof S Chandrasekaran on the occasion of his 60th birthday  相似文献   
77.
Dual level of quantum mechanical calculations have been carried out for hydrogen abstraction from Piperazine [HN(CH2CH2)2NH] initiated by OH radical. Geometry optimisation and frequency calculations of all species involved in the titled reaction have been performed at M06-2X/6-31+G(d,p) level of theory. For the accuracy in the thermochemistry and kinetics data, single-point energy calculations have been further carried out at coupled cluster CCSD(T) method along with 6-311G(d,p) basis set. An energy profile diagram for the reaction has been plotted along with pre-reactive and post-reactive complexes at entrance and exit channels. Intrinsic reaction coordinates (IRCs) calculations have been performed for identification of real transition states that connect it via reactant to product. Our result shows that the H-atom abstraction takes place from the C–H position of Piperazine. The rate constant is calculated using canonical transition state theory (CTST) is found to be 2.86 × 10?10 cm3 molecule?1 s?1 which is in good agreement with the reported experimental rate constant (2.38 ± 0.28) × 10?10 cm3 molecule?1 s?1 at 298 K. We have also reported rate constant for the temperature range 300–500 K. Using group-balance isodesmic reaction, the standard enthalpies of formation for Piperazine and product radicals generated by hydrogen abstraction are reported. The branching ratios for both reaction channel (i.e. H-abstraction from –CH2 and –NH position of Piperazine) are found to be 93% and 7%, respectively. The calculated atmospheric life time of Piperazine is found to be 0.97 hour.  相似文献   
78.
Lead-free polycrystalline ceramic 0.55Ba(Zr0.2Ti0.8)O3–0.45(Ba0.7Ca0.3)TiO3 (0.55BZT–0.45BCT) was synthesized by sol–gel method and the dielectric, impedance and optical properties of this ceramic were studied. X-ray diffraction analysis revealed the formation of pure perovskite phase with the coexistence of tetragonal and rhombohedral structures. The high value of dielectric constant (~6,985) with low dielectric loss (~0.013) was obtained at room temperature. Bulk and grain boundary resistances were measured by impedance analysis, which revealed negative temperature coefficient of resistance behaviour in this ceramic. The estimated value of optical band gap was found to be ~3.16 eV, which is related to the presence of intermediate energy levels. Two emission bands one at ~365 nm (UV region) and another at ~465 nm (blue region) were observed in photoluminescence spectrum at room temperature.  相似文献   
79.
Reducing p-nitrophenol (PNP) to p-aminophenol is an industrially relevant synthesis. Nevertheless, only a few heterogeneous catalysts have been evaluated for the reduction of PNP by glycerol. Appropriate quantum computational studies can screen potential catalysts for this crucial green reaction. The present research investigates the catalytic activities of Pd@Ag and Ni@Ag core-shell nanogeometries toward PNP reduction by glycerol through density functional theory (DFT) calculations. The central atom of a geometry-optimized 13-atom Ag cluster was replaced by Pd and Ni atoms to create the core-shell morphologies. The interaction energies of PNP and glycerol with each of the (metal/bimetallic) clusters were evaluated by DFT calculations to find the best PNP and glycerol molecule orientation with the respective bimetallic cluster. Electrostatic potential surface and natural bond orbital analyses were performed to study the charge distribution and transfer between atomic orbitals. The frequencies of vibrational modes in isolated PNP/glycerol structures were compared to those when these molecules were in the presence of the different metal clusters to infer the effect of the interactions. All performed analyses indicated improved catalytic activity toward PNP reduction by glycerol upon Ni-doping of the Ag13 cluster.  相似文献   
80.
Synthesis of multi-walled carbon nanotubes (MWCNTs) doped silica xerogel films was reported in this work. A crucial step of introducing MWCNTs was achieved by functionalizing them by acid treatment to form stable and homogenous SiO2/MWCNTs sol. Scanning electron microscopy showed spherical particles in honeycomb network structure for undoped xerogel films whereas dispersion and wrapping of MWCNTs in silica matrix was observed for MWCNTs doped films. Various bond formations during the sol–gel process and surface modification were confirmed using Fourier transform infra-red and detailed study on the chemical bonding state of the films was carried out using X-ray photoelectron spectroscopy. Nanoindentation studies showed that the mechanical properties of MWCNTs doped xerogel film increase dramatically: higher modulus (E = 2.127 ± 0.095 GPa) and hardness (H = 0.035 ± 0.017 GPa) values than those of pristine xerogel film (E = 0.234 ± 0.058 GPa, H = 0.01 ± 0.003 GPa).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号