首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5843篇
  免费   127篇
  国内免费   34篇
化学   4055篇
晶体学   88篇
力学   134篇
数学   985篇
物理学   742篇
  2022年   36篇
  2021年   42篇
  2020年   41篇
  2019年   62篇
  2018年   58篇
  2017年   47篇
  2016年   113篇
  2015年   113篇
  2014年   113篇
  2013年   314篇
  2012年   262篇
  2011年   320篇
  2010年   148篇
  2009年   145篇
  2008年   287篇
  2007年   313篇
  2006年   264篇
  2005年   301篇
  2004年   250篇
  2003年   281篇
  2002年   234篇
  2001年   102篇
  2000年   87篇
  1999年   84篇
  1998年   63篇
  1997年   86篇
  1996年   94篇
  1995年   92篇
  1994年   84篇
  1993年   64篇
  1992年   54篇
  1991年   60篇
  1990年   49篇
  1989年   63篇
  1988年   72篇
  1987年   55篇
  1986年   52篇
  1985年   78篇
  1984年   99篇
  1983年   67篇
  1982年   90篇
  1981年   96篇
  1980年   91篇
  1979年   74篇
  1978年   79篇
  1977年   73篇
  1976年   67篇
  1975年   58篇
  1974年   48篇
  1973年   36篇
排序方式: 共有6004条查询结果,搜索用时 0 毫秒
121.
This study assesses whether the concentrations of biologically important elements in bones are altered by long‐term consumption of cadmium (Cd)‐contaminated water. Heavy metal poisoning has significant impact on humans, and pollutants such as Cd are often found at high concentrations in waterways. Twelve Sprague Dawley rats consumed water with 50 p.p.m. Cd (Cd group), and another 12 consumed normal water (control group). Six subjects from each group were sacrificed after 2 weeks and the others after 4 weeks. Spectra were acquired from the femur by using the EDAX Eagle III micro‐XRF setup, and quantitative calculations were performed by using the fundamental parameter method to determine the concentrations of elements. A bone calcium/phosphorus concentration ratio (Ca/P) of 2.07 ± 0.001 is observed in the spectra from control subjects after 2 weeks and 2.07 ± 0.001 after 4 weeks. In Cd subjects, Ca/P after 2 weeks is 2.04 ± 0.001 and after 4 weeks is 1.97 ± 0.003. Statistically significant differences are obtained when comparing controls with Cd subjects at both time points and when comparing Cd subjects at both time points. Cadmium poisoning significantly affects bone Ca and P concentrations, increasing the likelihood of osteoporosis and other bone diseases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
122.
Spectral signal intensities, especially in ‘real‐world’ applications with nonstandardized sample presentation due to uncontrolled variables/factors, commonly require additional spectral processing to normalize signal intensity in an effective way. In this study, we have demonstrated the complexity of choosing a normalization routine in the presence of multiple spectrally distinct constituents by probing a dataset of Raman spectra. Variation in absolute signal intensity (90.1% of total variance) of the Raman spectra of these complex biological samples swamps the variation in useful signals (9.4% of total variance), degrading its diagnostic and evaluative potential. Using traditional spectral band choices, it is shown that normalization results are more complex than generally encountered in traditionally designed sample sets investigating limited chemical species. We demonstrate that no choice of a single band proves to be appropriate for predicting all the reference parameters, instead requiring a tailored normalization routine for each parameter. Of the reference parameters studied in the chosen system, signals from pathogenic adducts in ocular tissues called advanced glycation endproducts were most prominent when normalizing about the 1550–1690 cm−1 region of the spectrum (17.5% of total variance, compared with 0.3% for unnormalized), while prediction of pentosidine and gender were optimized by normalization about the 1570 (R2 = 0.97 vs 0.57 for unnormalized) and 1003 cm−1 (p < 0.0000001 vs p < 0.01 for unnormalized) bands, respectively. The data obtained point to the extreme sensitivity of multivariate analysis to signal intensity normalization. Some general guidelines for making appropriate band choices are given, including the use of peak‐finding routines. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
123.
124.
Current efficient magnetic resonance imaging (MRI) methods such as parallel-imaging and k-t methods encode MR signals using a set of effective encoding functions other than the Fourier basis. This work revisits the proposition of directly manipulating the set of effective encoding functions at the radiofrequency excitation step in order to increase MRI efficiency. This approach, often termed "broadband encoding," enables the application of algebraic matrix factorization technologies to extract efficiency by representing and encoding MR signal content in a compacted form. Broadband imaging equivalents of fast multiecho, parallel and k-t MRI are developed and analyzed. The potential of these techniques to increase the time efficiency of data acquisition is experimentally verified on a commercial MRI scanner using simple spin-echo imaging. A three-dimensional gradient-echo dynamic imaging application that demonstrates the potential benefits of this approach compared to the present state of the art for certain applications is also presented.  相似文献   
125.

Background

Cardiac magnetic resonance imaging (CMR) can accurately determine infarct size. Prior studies using indirect methods to assess infarct size have shown that patients with larger myocardial infarctions have a worse prognosis than those with smaller myocardial infarctions.

Objectives

This study assessed the prognostic significance of infarct size determined by CMR.

Methods

Cine and contrast CMR were performed in 100 patients with coronary artery disease (CAD) undergoing routine cardiac evaluation. Infarct size was determined by planimetry. We used Cox proportional hazards regression analyses (stepwise forward selection approach) to evaluate the risk of all-cause death associated with traditional cardiovascular risk factors, symptoms of heart failure, medication use, left ventricular ejection fraction, left ventricular mass, angiographic severity of CAD and extent of infarct size determined by CMR.

Results

Ninety-one patients had evidence of myocardial infarction by CMR. Mean follow-up was 4.8±1.6 years after CMR, during which time 30 patients died. The significant multivariable predictors of all-cause mortality were extent of myocardial infarction by CMR, extent of left ventricular systolic dysfunction, symptoms of heart failure, and diabetes mellitus (P<.05). The presence of infarct greater than or equal to 24% of left ventricular mass and left ventricular ejection fraction less than or equal to 30% were the most optimal cut-off points for the prediction of death with bivariate adjusted hazard ratios of 2.11 (95% confidence interval 1.02-4.38) and 4.06 (95% confidence interval 1.73-9.54), respectively.

Conclusions

The extent of myocardial infarction determined by CMR is an independent predictor of death in patients with CAD.  相似文献   
126.
Photoproduction of the neutral kaon on the deuteron has been investigated at the Research Center for Electron Photon Science, Tohoku University. We constructed the Neutral Kaon Spectrometer-2 for the detection of charged particles from the decay of the neutral kaon and the hyperon. We obtained a momentum distribution of K 0 with the inclusive measurement. It was consistent with the previous measurement. The total cross section of γ + dK 0 + Λ + p was estimated from the measured integral cross section of γ + d → Λ + X. The total cross section with respect to the photon energy was compared with the theoretical calculations. It favored the Saclay-Lyon A model calculation with the ratio of the neutral to charged coupling constants of the axial-vector meson, K 1, as ~ ?1.5. The energy dependence and the magnitude of the total cross section were similar to the total cross section of γ + p → K + Λ.  相似文献   
127.
Manganese enhanced MRI (MEMRI) is an emerging technique for tracing neuronal pathways in vivo. However, manganese may leak into blood vessels or cerebrospinal fluid (CSF) after local injection and can be circulated to and taken up by brain regions that may not have connections to the targeted pathways. Comparing enhancement time courses after intranasal injection with intravenous infusion of MnCl2 in rats, the early enhancements in the pituitary gland (Pit) and hippocampus indicate the contrasts in those regions in the olfactory tract-tracing experiment were caused by such systemic effects. Since the Pit has easy access to manganese from the blood and its signal is proportional to other brain regions after intravenous infusion, it was used as an internal reference for the systemic effects. Applying intensity normalization by the Pit signal to tract-tracing data from the olfactory bulb led to reduced contrast in the hippocampus. These results demonstrate that nonspecific enhancements in MEMRI tract-tracing studies may have to be taken into account and that normalization by the Pit signal can compensate these effects.  相似文献   
128.
We report on the adsorption and decomposition of NO on O-covered planar Ir(2 1 0) and nanofaceted Ir(2 1 0) with variable facet sizes investigated using temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT). When pre-covered with up to 0.5 ML O, both planar and faceted Ir(2 1 0) exhibit unexpectedly high reactivity for NO decomposition. Upon increasing the oxygen coverage to 0.7 ML O, planar Ir(2 1 0) has little activity while faceted Ir(2 1 0) still remains active toward NO decomposition, although NO decomposition is completely inhibited when both surfaces are pre-covered by 1 ML O. NO molecularly adsorbs on O-covered Ir at 300 K. At low NO and oxygen coverage, NO adsorbs on the atop sites of planar Ir(2 1 0) while on the bridge and atop sites of faceted Ir(2 1 0) composed of (1 1 0) and {3 1 1} faces. No evidence for size effects in the decomposition of NO on O-covered faceted Ir(2 1 0) is observed for average facet size in the range 5-14 nm. Our findings should be of importance for development of Ir-based catalysts for NO decomposition under oxygen-rich conditions.  相似文献   
129.
Frequency domain (FD) fluorescence lifetime data was collected for a series of 20 crude petroleum oils using a 405 nm excitation source and over a spectral range of ~426 to ~650 nm. Average fluorescence lifetimes were calculated using three different models: discrete multi-exponential, Gaussian distribution, and Lorentzian distribution. Fitting the data to extract accurate average lifetimes using the various models proved easier and less time consuming for the FD data than with Time Correlated Single Photon Counting (TCSPC) methods however the analysis of confidence intervals to the computed average lifetimes proved cumbersome for both methods. The uncertainty in the average lifetime was generally larger for the discrete lifetime multi-exponential model when compared to the distribution-based models. For the lifetime distributions, the data from the light crude oils with long lifetimes generally fit to a single decay term. Heavier oils with shorter lifetimes required multiple decay terms. The actual value for the average lifetime is more dependant on the specific fitting model employed than the data acquisition method used. Correlations between average fluorescence lifetimes and physical and chemical parameters of the crude oils were made with a view to developing a quantitative model for predicting the gross chemical composition of crude oils. It was found that there was no significant benefit gained by using FD over TCSPC other than more rapid data analysis in the FD case. For the FD data the Gaussian distribution model for fluorescence lifetime gave the best correlations with chemical composition allowing a qualitative correlation to some bulk oil parameters.
Alan G. RyderEmail:
  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号