首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   10篇
  国内免费   1篇
化学   246篇
晶体学   4篇
力学   7篇
数学   30篇
物理学   58篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   14篇
  2013年   20篇
  2012年   16篇
  2011年   15篇
  2010年   8篇
  2009年   10篇
  2008年   20篇
  2007年   10篇
  2006年   14篇
  2005年   21篇
  2004年   21篇
  2003年   10篇
  2002年   19篇
  2001年   14篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1974年   4篇
  1937年   1篇
  1935年   2篇
  1933年   1篇
  1932年   1篇
  1930年   2篇
排序方式: 共有345条查询结果,搜索用时 46 毫秒
71.
The cyclic depsipeptide aplidine is a new anti-cancer drug of marine origin. Four metabolites of this compound were found after incubation with pooled human microsomes using gradient high-performance liquid chromatography with ultraviolet detection. After chromatographic isolation, the metabolites have been identified using nano-electrospray triple quadrupole mass spectrometry. A highly specific sodium-ion interaction with the cyclic structure opens the depsipeptide ring, and cleavage of the amino acid residues gives sequence information when activated by collision-induced dissociation in the second quadrupole. The aplidine molecule could undergo the following metabolic reactions: hydroxylation at the isopropyl group (metabolites apli-h 1 and apli-h 2); C-dealkylation at the N(Me)-leucine group (metabolite apli-da); hydroxylation at the isopropyl group and C-dealkylation at the N(Me)-leucine group (metabolite apli-da/h), and C-demethylation at the threonine group (metabolite apli-dm). The identification of these metabolites formed in vitro may greatly aid the elucidation of the metabolic pathways of aplidine in humans.  相似文献   
72.
Many analytical approaches are available to evaluate (bio)molecular interactions, all of which have their particular advantages and disadvantages. In recent years, two relatively new techniques have emerged that may be used by the bioanalytical community to evaluate such interactions, namely affinity capillary electrophoresis (ACE) and bioaffinity electrospray ionization-mass spectrometry (ESI-MS). In this paper, we describe and evaluate the use of both these techniques for the investigation of the interactions of glycopeptide antibiotics with peptides that mimic the bacterial cell wall binding site. We focus particularly on the effect of the sugar moieties attached to the antibiotic peptide backbone and on the noncovalent dimerization of these glycopeptide antibiotics.  相似文献   
73.
It is shown that several vancomycin group antibiotics (vancomycin, eremomycin, and avoparcin) undergo spontaneous chemical modifications when kept at room temperature at neutral pH in aqueous solutions containing traces of formaldehyde or acetaldehyde. This chemical modification predominantly results in a mass increase of 12 Da in the reaction with formaldehyde and 26 Da in the case of acetaldehyde. By using tandem mass spectrometry the modification can unambiguously be identified as originating from the formation of a ring-closed 4-imidazolidinone moiety at the N-terminus of the glycopeptide antibiotics, that is, near the receptor binding pocket of the glycopeptide antibiotics. Bioaffinity mass spectrometry shows that this ring-closure results in a dramatically decreased affinity for the peptidoglycan-mimicking D-alanyl-D-alanine receptor. Additionally, in vitro inhibition measurements on two different strains of bacteria have revealed that the modified antibiotics display reduced antibacterial activity. The ring-closure is also shown to have a dissociative effect on the dimerization of the vancomycin-analogue eremomycin. The spontaneous reaction of vancomycin with formaldehyde or acetaldehyde may have implications not only for the clinical use of this class of antibiotics, but also for the effectiveness of these antibiotics when they are used in chiral separation chromatography or capillary electrophoresis.  相似文献   
74.
Synthesis and modes of self-assembly are described for the tapered monodendritic molecules 3,4,5-nGi-X of generation i = 1, 2, 3 (see structures below) that contain multiple (CH2)nH alkyl chains on their periphery (n = 12, 14, 16) and a polar group X at the apex (X = COOH, COONa, COOCs, CO(OCH2CH2)3OH). These monodendrons self-assemble into supramolecular cylindrical or spherical dendrimers, which in turn self-organise into p6mm columnar or Pm3n cubic thermotropic liquid crystals, respectively. The two principal ways of affecting the self-assembly of these compounds by means of their molecular architecture are: a) by changing the width of the wide (aliphatic) end, and b) by changing the volume at the apex. In the present work a) is controlled through temperature (conformational disorder) and b) is controlled by chaging the generation number i or the size of X, for example, through the choice of metal cation. The single most important geometric parameter of these dendritic building blocks is the molecular solid angle (taper angle) alpha; a high alpha leads to spherical and a low alpha to cylindrical supramolecular dendrimers. Furthermore, alpha also determines the equilibrium size of the supramolecular objects; a larger alpha results in a smaller diameter. The unusually strong negative thermal expansion coefficient of the cubic and columnar lattice is attributed to the excess of the increasingly highly tapered molecules being rejected from their parent aggregates and reassembling as new ones. Increasing alpha is also considered to be responsible for the observed thermotropic columnar-cubic transition.  相似文献   
75.
76.
A liquid chromatographic/tandem mass spectrometric (LC/MS/MS) assay for the quantitative analysis of the novel anticancer drug ABT-518 and the screening of six potential metabolites in human plasma has been developed and validated to support a phase I study with the drug. ABT-518 is an inhibitor of matrix metalloproteinases, which are associated with tumor growth and development of metastasis. Plasma samples were prepared for analysis using a simple solid-phase extraction method on phenyl cartridges. LC separation was performed on a Zorbax extend C18 column (150 x 2.1 mm i.d., 5 microm particle size) using a mobile phase of methanol-aqueous 10 mM ammonium hydroxide (80:20, v/v) pumped at a flow-rate of 0.2 ml min(-1). An API2000 triple-quadrupole mass spectrometer was used for specific and sensitive detection. The best chromatographic speed (total run time 8 min) and peak shapes were obtained by employing an alkaline mobile phase (pH in aqueous phase approximately 10). Furthermore, an alkaline eluent was favored in order to obtain a better overall sensitivity for the protonated analytes. The dynamic range was from 10 to 1000 ng ml(-1) from 500 microl of plasma for ABT-518 and the metabolites were detected at levels of the same order of magnitude. Inter-assay accuracies for ABT-518 at five concentration levels were between -9.24 and 6.93% and inter-assay precisions were always <10.7%. Analyte stability was not critical during either storage or processing. This method was successfully applied in a phase I clinical study of ABT-518. The active drug, ABT-518, and all of the metabolites included in the assay could be identified in plasma from dosed patients. We believe that the method described in this paper using an alkaline mobile phase in combination with a basic stable analytical column may also be generally useful for the bioanalysis of other basic drugs.  相似文献   
77.
Abstract— Fluorescence lifetimes of spinach chloroplasts were measured with a modelocked dye laser and time-correlated single photon counting. Information about energy transport and functional organization of the chloroplasts is revealed by such time-resolved fluorescence studies. Quenching experiments using treatment with UV light or the chemical agent dibromothymoquinone are consistent with the notion that there is heterogeneity associated with PS II units and that such heterogeneity is reflected over the entire time range of fluorescence decay, not just in a single component. Phosphorylation experiments were also carried out which permit us to relate these kinetic studies to previous steady state observations.  相似文献   
78.
The reaction of [CpZrCl3(thf)2] with methyl 4,6-O-benzylidene-beta-D-glucopyranoside (beta-MeBGH2, 1) in the presence of Et3N results in the formation of the zirconate complex [Et3NH] [(CpZrCl)2(mu-Cl) (mu-(beta-MeBG)]2] (2). X-ray structure analyses were performed from the ligand precursor beta-MeBGH2 1 as well as from 2. Compound 1 crystallizes in the monoclinic chiral space group P2(1). The molecules show a flat arrangement including the benzylidene protecting group, and are packed in columns. The columns are held together in pairs by the formation of hydrogen bonds between the hydroxy functions in positions 2 and 3. Compound 2 crystallizes in the orthorhombic space group P2(1)2(1)2(1). The beta-MeBG ligands are chelating the Zr atoms through the oxygen atoms in positions 2 and 3 of the glucopyranosidato ligand revealing a 1-zircona-2,5-dioxolane moiety each; the oxygen atom in position 3 is linked to both of the Zr atoms. Additionally one chloro ligand is bridging the two Zr centers. Two terminally bound chloro ligands stick out from the two Zr atoms into a chiral U-shaped cavity constructed by the two beta-MeBG ligands. The cavity incorporates the tertiary ammonium cation [Et3NH]+ which is bound to one of the terminal chloro ligands through a hydrogen bond. The inclusion of the [Et3NH]+ cation in the U-shaped cavity, even in solution, is demonstrated by NMR spectroscopic data.  相似文献   
79.
The luminescence of the inorganic–organic hybrid nanoparticles ZrO(MFP) (MFP=methylfluorescein phosphate) and ZrO(RP) (RP=resorufin phosphate) was modified by addition of different rare earth halides LnCl3. The resulting composite materials form dispersible nanoparticles that exhibit modified nanoparticle fluorescence depending on the rare earth ion. The resulting chromaticity of the luminescence is further variable by the employment of different solvents for ZrO(MFP)-based composite systems. The strong solvatochromic effect of the MFP chromophore leads to different luminescence chromaticities of the composite materials between green, yellow, and blue in THF, toluene, and dichloromethane, respectively. The luminescence of ZrO(RP)-based composite particles can be modified between the red and blue spectral regions in dependence on the applied reaction temperature. Beside a luminescence shift that is derived from nanoparticle modification by LnCl3, a strong turn-on effect of ZrO(RP) particles results after contact with different Brønsted acids and bases in combination with a respective chromaticity shift. Both effects enable the potential employment of such particles as highly sensitive optical pH sensors.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号