首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6243篇
  免费   286篇
  国内免费   32篇
化学   4793篇
晶体学   70篇
力学   115篇
数学   493篇
物理学   1090篇
  2023年   38篇
  2022年   98篇
  2021年   127篇
  2020年   101篇
  2019年   105篇
  2018年   82篇
  2017年   83篇
  2016年   208篇
  2015年   166篇
  2014年   223篇
  2013年   388篇
  2012年   433篇
  2011年   524篇
  2010年   307篇
  2009年   298篇
  2008年   443篇
  2007年   348篇
  2006年   348篇
  2005年   294篇
  2004年   261篇
  2003年   219篇
  2002年   261篇
  2001年   139篇
  2000年   145篇
  1999年   95篇
  1998年   53篇
  1997年   64篇
  1996年   67篇
  1995年   41篇
  1994年   35篇
  1993年   40篇
  1992年   44篇
  1991年   32篇
  1990年   36篇
  1989年   34篇
  1988年   22篇
  1987年   18篇
  1986年   19篇
  1985年   31篇
  1984年   28篇
  1983年   17篇
  1982年   19篇
  1981年   16篇
  1980年   13篇
  1979年   12篇
  1978年   19篇
  1977年   20篇
  1976年   13篇
  1975年   14篇
  1970年   19篇
排序方式: 共有6561条查询结果,搜索用时 15 毫秒
991.
Colorimetric uranium sensors based on uranyl (UO2(2+)) specific DNAzyme and gold nanoparticles (AuNP) have been developed and demonstrated using both labeled and label-free methods. In the labeled method, a uranyl-specific DNAzyme was attached to AuNP, forming purple aggregates. The presence of uranyl induced disassembly of the DNAzyme functionalized AuNP aggregates, resulting in red individual AuNPs. Once assembled, such a "turn-on" sensor is highly stable, works in a single step at room temperature, and has a detection limit of 50 nM after 30 min of reaction time. The label-free method, on the other hand, utilizes the different adsorption properties of single-stranded and double-stranded DNA on AuNPs, which affects the stability of AuNPs in the presence of NaCl. The presence of uranyl resulted in cleavage of substrate by DNAzyme, releasing a single stranded DNA that can be adsorbed on AuNPs and protect them from aggregation. Taking advantage of this phenomenon, a "turn-off" sensor was developed, which is easy to control through reaction quenching and has 1 nM detection limit after 6 min of reaction at room temperature. Both sensors have excellent selectivity over other metal ions and have detection limits below the maximum contamination level of 130 nM for UO2(2+) in drinking water defined by the U.S. Environmental Protection Agency (EPA). This study represents the first direct systematic comparison of these two types of sensor methods using the same DNAzyme and AuNPs, making it possible to reveal advantages, disadvantages, versatility, limitations, and potential applications of each method. The results obtained not only allow practical sensing application for uranyl but also serve as a guide for choosing different methods for designing colorimetric sensors for other targets.  相似文献   
992.
We have examined both self-assembly and confinement effect in room-temperature ionic liquid (RTIL)-aluminum hydroxide hybrids (RAHs) to attain a fundamental understanding of special phenomena in nanoscale spaces as well as to design functional nanomaterials for practical applications. Phase-controlled one-dimensional (1D) RAHs were synthesized through a simple ionothermal process. The RAHs were hierarchically transformed in terms of the molecular structures, morphologies, and phases of the materials during the ionothermal process with respect to the concentration of RTIL. In addition to the hierarchical transformation, the RTIL/aluminum hydroxide nanohybrids revealed unexpected physical behaviors, including thermal transition variation of the RTIL in confined environments and a phase transition from nanosolid to nanoliquid affected by changes of the melting points. More importantly, intermolecular interaction induced-self-assembly and confinement effect of RTILs inside an integrated hybrid system, which have not been clearly explained to date, were analyzed by 2D infrared correlation spectroscopy (2D IR COS); dynamic behaviors of RTILs, i.e., sequentially spatial reorientation and kinetically conformational changes, were attributed to the interactions between RTILs and aluminum hydroxides. 2D IR COS offers a new way to interpret highly complex, veiled systems such as the formation mechanism of nanoparticles, biomineralization, self/supramolecular assembly, and nanoconfinement.  相似文献   
993.
Hong JW  Chung KH  Yoon HC 《The Analyst》2008,133(4):499-504
An application of a novel polymer microfluidic chip for sample exchange via natural capillary forces for immuno-analysis is described. The microfluidic device was designed to achieve sample replacement by capillary force only, which would therefore be suitable for point-of-care-testing. Complete and automatic replacement of the sample in the reaction chamber with another one makes the chip able to mimic affinity chromatography and immunoassay processes. The microfluidic chip was made using polymer replication techniques, which were suitable for fast and cheap fabrication. Micrometre-sized polystyrene beads were used for the functionalization of biomolecules. Dinitrophenyl (DNP) and anti-DNP antibody coordination was employed on the chip for fluorescence analysis. DNP was immobilized on the polymer beads via a pre-adsorbed dendrimer layer and the beads were placed in the reaction chamber. Fluorescein tagged anti-DNP was successfully observed by a fluorescence microscope after the completion of the entire flow sequence. A calibration curve was registered based on the anti-DNP concentration. A multiplex sensing was accomplished by adding biotin/streptavidin coordination to the system. DNP and biotin conjugated beads were placed in the reaction chamber in an ordered fashion and biospecific bindings of anti-DNP antibody and streptavidin were observed at their expected sites. A ratiometric analysis was carried out with different concentration ratios of anti-DNP/streptavidin. The microfluidic chip described in this work could be applied to various biological and chemical analyses using integrated washing steps or fluid replacement steps with minimum sample handling.  相似文献   
994.
Isotactic 6-armed star-shaped poly(vinyl alcohol) (PVA) with a narrow molecular weight distribution was successfully prepared by the living cationic polymerization of 6-armed star-shaped poly(tert-butyl vinyl ether) (PTBVE) and subsequent acidic ether cleavage. The PTBVE was synthesized using hexa(chloromethyl) melamine (HCMM) as a hexafunctional initiator and ZnI2 or ZnCl2 as an activator in toluene/MC (1/1 v/v) at −70 °C. A better living stability of PTBVE was obtained in the ZnCl2 activator system. The number average molecular weight and the polydispersity index of the 6-armed star-shaped PTBVE polymerized with ZnCl2 at −70 °C for 24 h were 156,000 g/mol and 1.47, respectively. The fraction of the mm sequence of the resulting PVA was 52%.  相似文献   
995.
996.
997.
998.
The first total synthesis of inostamycin A is described. With efficient and stereoselective synthetic routes to aldehyde 3 and ketone 4 developed through asymmetric aldol reactions, addition reactions and reduction, and with chiral building blocks, the two large fragments were coupled with remarkable anti stereoselectivity and efficiency by aldol condensation. The coupling reaction provided the complete carbon skeleton with all the requisite functional groups and stereogenic centers for inostamycin A. The two quaternary carbons at C20 and C16 of ketone 4 were elaborated in a highly stereocontrolled manner by addition reactions of the transmetallated 5 to ethyl ketone 6 and the transmetallated 7 to methyl ketone 8 , respectively, in which the use of LaCl3 for transmetallation was critical for high coupling efficiency.  相似文献   
999.
The hydroxylation of vitamin D3 (VD3, cholecalciferol) side chains to give 25‐hydroxyvitamin D3 (25OHVD3) is a crucial reaction in the formation of the circulating and biologically active forms of VD3. It is usually catalyzed by cytochrome P450 monooxygenases that depend on complex electron donor systems. Cell‐free extracts and a purified Mo enzyme from a bacterium anaerobically grown with cholesterol were employed for the regioselective, ferricyanide‐dependent hydroxylation of VD3 and proVD3 (7‐dehydrocholesterol) into the corresponding tertiary alcohols with greater than 99 % yield. Hydroxylation of VD3 strictly depends on a cyclodextrin‐assisted isomerization of VD3 into preVD3, the actual enzymatic substrate. This facile and robust method developed for 25OHVD3 synthesis is a novel example for the concept of substrate‐engineered catalysis and offers an attractive alternative to chemical or O2 /electron‐donor‐dependent enzymatic procedures.  相似文献   
1000.
A highly active alternative to Pt electrocatalysts for the oxygen reduction reaction (ORR), which is the cathode‐electrode reaction of fuel cells, is sought for higher fuel‐cell performance. Our theoretical modelling reveals that B‐doped Pd (Pd‐B) weakens the absorption of ORR intermediates with nearly optimal binding energy by lowering the barrier associated with O2 dissociation, suggesting Pd‐B should be highly active for ORR. In fact, Pd‐B, facile synthesized by an electroless deposition process, exhibits 2.2 times and 8.8 times higher specific activity and 14 times and 35 times less costly than commercial pure Pd and Pt catalysts, respectively. Another computational result is that the surface core level of Pd is negatively shifted by B doping, as confirmed by XPS, and implies that filling the density of states related to the anti‐bonding of oxygen to Pd surfaces with excess electrons from B doping, weakens the O bonding to Pd and boosts the catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号