首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   6篇
  国内免费   6篇
化学   644篇
晶体学   4篇
力学   20篇
数学   40篇
物理学   172篇
  2023年   4篇
  2021年   4篇
  2020年   4篇
  2019年   11篇
  2018年   11篇
  2017年   5篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   25篇
  2012年   36篇
  2011年   52篇
  2010年   28篇
  2009年   37篇
  2008年   57篇
  2007年   60篇
  2006年   62篇
  2005年   67篇
  2004年   51篇
  2003年   34篇
  2002年   42篇
  2001年   11篇
  2000年   14篇
  1999年   9篇
  1998年   9篇
  1997年   3篇
  1996年   17篇
  1995年   10篇
  1994年   4篇
  1993年   10篇
  1992年   11篇
  1991年   4篇
  1990年   9篇
  1988年   4篇
  1987年   7篇
  1986年   9篇
  1985年   19篇
  1984年   17篇
  1983年   6篇
  1982年   9篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   11篇
  1977年   3篇
  1975年   6篇
  1974年   4篇
  1968年   6篇
  1967年   3篇
  1966年   2篇
排序方式: 共有880条查询结果,搜索用时 171 毫秒
131.
Bacterial cellulose (BC), which is produced by Gluconacetobacter xylinus (Ga. xylinus) in culture, is made up of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. In the current studies, we used two processes to prepare nanocomposites of BC filled with silica particles. In Process I, Ga. xylinus was incubated in medium containing silica sol Snowtex 0 (ST 0, pH 2–4) or Snowtex 20 (ST 20, pH 9.5–10.0). The elastic modulus at 20 °C was improved by keeping the amount of silica in the nanocomposites below 4% when ST 20 was used and below 8.7% when ST 0 was used. This process allowed incorporation of 50% silica in BC. Inclusion of higher amounts of silica reduced the modulus at 20 °C and the strength of the nanocomposites below that of BC. X-ray diffraction measurements revealed that the silica particles disturb the formation of ribbon-shaped fibrils and affect the preferential orientation of the ( ) plane. We also produced BC-silica nanocomposites by Process II, wherein the BC hydrogel was immersed in different concentrations of silica sols, allowing silica particles to diffuse into the BC hydrogel and lodge in the spaces between the ribbon-shaped fibrils. This method increased the modulus at 20°C and the strength compared to the BC matrix, but it was difficult to load the BC with more than 10% silica in this way.  相似文献   
132.
New nucleotide pairs applicable to formation of DNA triplexes were developed. We designed oligonucleotides incorporating 5-aryl deoxycytidine derivatives (dC5Ars) and cyclic deoxycytidine derivatives, dCPPP and dCPPI, having an expanded aromatic area, as the second strand. As pairing partners, two types of abasic residues (C3: propylene linker, phi: abasic base) were chosen. It was concluded that, when the 5-aryl-modified cytosine bases paired with the abasic sites in TFOs in a space-fitting manner, the stability of the resulting triplexes significantly increased. The recognition of C3 toward dC5Ars was selective because of the stacking interactions between their aromatic part and the nucleobases flanking the abasic site. These results indicate the potential utility of new nucleotide triplets for DNA triplex formation, which might expand the variety of structures and sequences and might be useful for biorelated fields such as DNA nanotechnologies.  相似文献   
133.
We investigated hydration and swelling behavior of a solid state photoresponsive copolymer in water by using a quartz crystal microbalance technique with dissipation measurement (QCM-D technique). On the gold film electrode of a quartz resonator, we deposited a thin layer of a pNSp-NIPAAm, which is a poly(N-isopropylacrylamide) (pNIPAAm) polymer partially modified with a photochromic chromophore, 6-nitrospiropyran (NSp). Using QCM-D measurements, we found that at a temperature of 19 °C both water adsorption and changes in the viscoelasticity of the solid pNSp-NIPAAm layer were induced when pNSp-NIPAAm was irradiated by 365 nm ultraviolet light, which triggers the photoisomerization of the NSp chromophore and makes the structure of the chromophore hydrophilic. At temperatures between 25 and 35 °C, this photo-induced hydration was not observed. These observations suggest that the photoisomerization of the NSp chromophores triggered the photo-induced hydration only when pNIPAAm component is sufficiently hydrophilic, at a temperature of 19 °C.  相似文献   
134.
New supramolecular copper complexes with pyrazinotetrathiafulvalene (pyra-TTF) as the ligand, [Cu(II)Cl2(pyra-TTF)] (1) and (pyra-TTF) 2[Cu(I)3Cl4(pyra-TTF)] (2), have been synthesized by the diffusion method. Complex 1 is a black block crystal with a three-dimensional (3-D) supramolecular network; the linear chain [-Cu(II)Cl2-(pyra-TTF)-] n extends along the b axis, where the coordinated pyra-TTF donors are stacked in a head-to-tail and ring-over-bond configuration to construct two-dimensional (2-D) sheets, and between the sheets, there are C...Cl(-) or H...Cl(-) contacts. Even though the electron spin resonance (ESR) measurement reveals the nearly Cu(II) state, complex 1 is a semiconductor with sigmaRT=1.0 x 10(-4) S cm(-1) and Ea=0.33 eV. The high-frequency conductivity measurement also confirmed the intrinsic slight carrier doping from Cu(II) to the pyra-TTF donor. This slight doping enhances not only the real and imaginary dielectric constants but also the antiferromagnetic interaction between Cu(II) spins following the 2-D Heisenberg model with 2J=-20 K. In contrast, complex 2 is a very thin black needle. This needle crystal has two crystallographically independent pyra-TTF molecules, which are coordinated and noncoordinated donors. The coordinated donors composed a supramolecular chain [Cu(I)3Cl4(pyra-TTF)(0)]n , whereas the noncoordinated donors formed conducting alpha'-type pyra-TTF(+0.5) sheets. This complex is semiconducting with sigmaRT=0.1 S cm(-1) and Ea=0.15 eV. Both complexes 1 and 2 demonstrate that the pyra-TTF molecule works not only as an oxidized donor by Cu(II) to construct conducting sheets but also as a ligand coordinated to a Cu cation to form supramolecuar chains.  相似文献   
135.
The structure of liquid Cs(FH)(2.3)F was revealed using a combination of high-energy x-ray and neutron diffraction measurements. We found that the strongest intermolecular H-F hydrogen bonds at an average distance of 1.36 A are accompanied by the formation of a high degree of bending of the oligomer chain in the melt, with [angle]FHF=150 degrees . A reverse Monte Carlo simulation showed that the average number of atoms per chain is 4.4. A detailed chain analysis of the atomic configuration revealed that (FH)(2)F(-) oligomer chains are the major entities in the liquid, and asymmetrical FHF(-) are formed owing to the strong H-F hydrogen bonds. The results suggest that an average of one or two HF molecules bond to each of the 11 fluorine atoms surrounding a cesium ion.  相似文献   
136.
Unsymmetrical gold(III)-dithiolene complexes are potential candidates for molecular materials that exhibit thermal structural phase transitions. In this study, unsymmetrical ppy-gold(III) (ppy=C-deprotonated-2-phenylpyridine(−)) complexes [AuC5] and [AuC6] coordinated by dithiolene ligands containing tetrathiafulvalene (TTF) skeletons with pentylthio (2-{bis(pentylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) and hexylthio groups (2-{bis(hexylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) were synthesized. Both complexes exhibited a large absorption band at approximately 508 nm, owing to intramolecular ligand-to-ligand charge transfer. One-dimensional columnar structures with head-to-tail molecular arrangements around the metal ions were constructed in the crystals. The flexible alkylthio groups were intercalated into crystalline spaces between dithiolene ligands in the columns. [AuC5] exhibits a simple phase transition at 198 °C between crystalline and isotropic phases irreversibly. The crystalline phase of [AuC6] observed at 25 °C melted at 148 °C. Another crystalline phase grew above 148 °C with a very slow crystallization rate from the liquid phase and was completely transformed into an isotropic phase at 200 °C.  相似文献   
137.
A photocatalytic H2 production system using an inorganic–bio hybrid photocatalyst could contribute to the efficient utilization of solar energy, but would require the development of a new approach for preparing a H2‐forming biocatalyst. In the present study, we constructed a recombinant strain of Escherichia coli expressing the genes encoding the [FeFe]‐hydrogenase and relevant maturases from Clostridium acetobutylicum NBRC 13948 for use as a biocatalyst. We investigated the direct application of a whole‐cell of the recombinant E. coli. The combination of TiO2, methylviologen, and the recombinant E. coli formed H2 under light irradiation, demonstrating that whole cells of the recombinant E. coli could be employed for photocatalytic H2 production without any time‐consuming and costly manipulations (for example, enzyme purification). This is the first report of the direct application of a whole‐cell reaction of recombinant E. coli to photocatalytic H2 production.  相似文献   
138.
Natural enantiomers of unique tricyclic sesquiterpenoids, valeriananoids A-C 1-3, have been synthesized starting from bicyclo[2.2.2]octane-2,5-dione derivative 11, which was obtained by diastereoselective catalytic domino Michael reaction of oxophorone 5 with 8-phenylmenthyl acrylate 10 by LDA or silica-gel-base (NMAP-Li). The tricyclic ring was closed selectively by intramolecular 6-endo-trig mode cyclization of the ketyl radical, which was generated from keto-allylether 25 by either lithium or sodium naphthalenide.  相似文献   
139.
Preferential oxidation (PROX) of CO is an important practical process to purify H2 for use in polymer electrolyte fuel cells. Although many supported noble metal catalysts have been reported so far, their catalytic performances remain insufficient for operation at low temperature. We found that Pt nanoparticles in mesoporous silica give unprecedented activity, selectivity, and durability in the PROX reaction below 353 K. We also studied the promotional effect of mesoporous silica in the Pt-catalyzed PROX reaction by infrared spectroscopy using the isotopic tracer technique. Gas-phase O2 is not directly used for CO oxidation, but the oxygen of mesoporous silica is incorporated into CO2. These results suggest that CO oxidation is promoted by the attack of the surface OH groups to CO on Pt without forming water.  相似文献   
140.
The photophysical properties and photoswitching scheme of the reversible photoswitchable green fluorescent protein-like fluorescent proteins Dronpa-2 and Dronpa-3 were investigated by means of ensemble and single-molecule fluorescence spectroscopy and compared to those of the precursor protein Dronpa. The faster response to light and the faster dark recovery of the new mutants observed in bulk also hold at the single-molecule level. Analysis of the single-molecule traces allows us to extract the efficiencies and rate constants of the pathways involved in the forward and backward switching, and we find important differences when comparing the mutants to Dronpa. We rationalize our results in terms of a higher conformational freedom of the chromophore in the protein environment provided by the beta-can. This thorough understanding of the photophysical parameters has allowed us to optimize the acquisition parameters for camera-based sub-diffraction-limit imaging with these photochromic proteins. We show that Dronpa and its mutants are useful for fast photoactivation-localization microscopy (PALM) using common wide-field microscopy equipment, as individual fluorescent proteins can be localized several times. We provide a new approach to achieve fast PALM by introducing simultaneous two-color stroboscopic illumination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号