首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2003篇
  免费   345篇
  国内免费   231篇
化学   1421篇
晶体学   15篇
力学   91篇
综合类   6篇
数学   276篇
物理学   770篇
  2024年   6篇
  2023年   49篇
  2022年   51篇
  2021年   51篇
  2020年   68篇
  2019年   61篇
  2018年   68篇
  2017年   60篇
  2016年   84篇
  2015年   73篇
  2014年   91篇
  2013年   127篇
  2012年   155篇
  2011年   165篇
  2010年   97篇
  2009年   127篇
  2008年   127篇
  2007年   122篇
  2006年   119篇
  2005年   102篇
  2004年   74篇
  2003年   60篇
  2002年   56篇
  2001年   62篇
  2000年   54篇
  1999年   64篇
  1998年   34篇
  1997年   46篇
  1996年   47篇
  1995年   33篇
  1994年   18篇
  1993年   26篇
  1992年   31篇
  1991年   28篇
  1990年   22篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1976年   4篇
  1974年   3篇
  1973年   5篇
排序方式: 共有2579条查询结果,搜索用时 0 毫秒
91.
In this paper we investigate the controlled dense coding with the maximal slice states. Three schemes are presented. Our schemes employ the maximal slice states as quantum channel, which consists of the tripartite entangled state from the first party(Alice), the second party(Bob), the third party(Cliff). The supervisor(Cliff) can supervises and controls the channel between Alice and Bob via measurement. Through carrying out local von Neumann measurement, controlled-NOT operation and positive operator-valued measure(POVM), and introducing an auxiliary particle, we can obtain the success probability of dense coding. It is shown that the success probability of information transmitted from Alice to Bob is usually less than one. The average amount of information for each scheme is calculated in detail. These results offer deeper insight into quantum dense coding via quantum channels of partially entangled states.  相似文献   
92.
In this paper, the nonlinear minimax problems with inequality constraints are discussed. Based on the idea of simple sequential quadratically constrained quadratic programming algorithm for smooth constrained optimization, an alternative algorithm for solving the discussed problems is proposed. Unlike the previous work, at each iteration, a feasible direction of descent called main search direction is obtained by solving only one subprogram which is composed of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the constrained functions. Then a high-order correction direction used to avoid the Maratos effect is computed by updating the main search direction with a system of linear equations. The proposed algorithm possesses global convergence under weak Mangasarian–Fromovitz constraint qualification and superlinear convergence under suitable conditions with the upper-level strict complementarity. At last, some preliminary numerical results are reported.  相似文献   
93.
One of fundamental problems in Finsler geometry is to establish some delicate equations between Riemannian invariants and non-Riemannian invariants. Inspired by results due to Akbar-Zadeh etc., this note establishes a new fundamental equation between non-Riemannian quantity H and Riemannian quantities on a Finsler manifold. As its application, we show that all R-quadratic Finsler metrics have vanishing non-Riemannian invariant H generalizing result previously only known in the case of Randers metric.  相似文献   
94.
方志杰  朱基珍  周江  莫曼 《中国物理 B》2012,21(8):87105-087105
Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,V Cu,O i,and O Cu are the relevant intrinsic defects in CuCrO2 ;among these intrinsic defects,V Cu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.  相似文献   
95.
The palladium‐catalyzed reaction of 2‐alkynylanilines with 2‐(2‐bromobenzylidene)cyclobutanone as an efficient route to 7,8‐dihydrobenzo[b]naphtho[2,3‐d]azocin‐6(5 H)‐ones was developed. The fused eight‐membered ring was constructed conveniently. During the reaction process, double carbometalation was involved, which resulted in excellent selectivity with the formation of three new bonds. This transformation is highly efficient and leads to fused polycycles in good to excellent yields with good functional group tolerance.  相似文献   
96.
A highly efficient protocol for the Pd-catalyzed regioselective Heck arylation of the electron-rich olefin N-acyl-N-vinylamine with aryl halides has been developed. In the presence of hydrogen-bond donor [H2NiPr2][BF4] as an additive, this proceeds smoothly in isopropanol to afford exclusively the branched products in high yields.  相似文献   
97.
Here, we for the first time introduce ethoxylation chemistry to develop a new octupolar cyano-vinylene-linked 2D polymer framework (Cyano-OCF-EO) capable of acting as efficient mixed electron/ion conductors and metal-free sulfur evolution catalysts for dual-promoted Li and S electrochemistry. Our strategy creates a unique interconnected network of strongly-coupled donor 3-(acceptor-core) octupoles in Cyano-OCF-EO, affording enhanced intramolecular charge transfer, substantial active sites and crowded open channels. This enables Cyano-OCF-EO as a new versatile separator modifier, which endows the modified separator with superior catalytic activity for sulfur conversion and rapid Li ion conduction with the high Li+ transference number up to 0.94. Thus, the incorporation of Cyano-OCF-EO can concurrently regulate sulfur redox reactions and Li-ion flux in Li−S cells, attaining boosted bidirectional redox kinetics, inhibited polysulfide shuttle and dendrite-free Li anodes. The Cyano-OCF-EO-involved Li−S cell is endowed with excellent overall electrochemical performance especially large areal capacity of 7.5 mAh cm−2 at high sulfur loading of 8.7 mg cm−2. Mechanistic studies unveil the dominant multi-promoting effect of the triethoxylation on electron and ion conduction, polysulfide adsorption and catalytic conversion as well as previously-unexplored −CN/C−O dual-site synergistic effect for enhanced polysulfide adsorption and reduced energy barrier toward Li2S conversion.  相似文献   
98.
Indocyanine green (ICG) is the only near-infrared (NIR) dye approved for clinical use. Despite its versatility in photonic applications and potential for photothermal therapy, its photobleaching hinders its application. Here we discovered a nanostructure of dimeric ICG (Nano-dICG) generated by using ICG to stabilize nanoemulsions, after which ICG enabled complete dimerization on the nanoemulsion shell, followed by J-aggregation of ICG-dimer, resulting in a narrow, red-shifted (780 nm→894 nm) and intense (≈2-fold) absorbance. Compared to ICG, Nano-dICG demonstrated superior photothermal conversion (2-fold higher), significantly reduced photodegradation (−9.6 % vs. −46.3 %), and undiminished photothermal effect (7 vs. 2 cycles) under repeated irradiations, in addition to excellent colloidal and structural stabilities. Following intravenous injection, Nano-dICG enabled real-time tracking of its delivery to mouse tumors within 24 h by photoacoustic imaging at NIR wavelength (890 nm) distinct from the endogenous signal to guide effective photothermal therapy. The unprecedented finding of nanostructure-driven ICG dimerization leads to an ultra-stable phototheranostic platform.  相似文献   
99.
Growth factors are essential for wound healing owing to their multiple reparative effects. Concentrated growth factor (CGF) is a third-generation platelet extract containing various endogenous growth factors. Herein, a CGF extract solution is combined with gelatin methacrylate (GM) by physical blending to produce GM@CGF hydrogels for wound repair. The GM@CGF hydrogels show no immune rejection during autologous transplantation. Compared to CGF, GM@CGF hydrogels not only exhibit excellent plasticity and adhesivity but also prevent rapid release and degradation of growth factors. The GM@CGF hydrogels display good injectability, self-healing, swelling, and degradability along with outstanding cytocompatibility, angiogenic functions, chemotactic functions, and cell migration-promoting capabilities in vitro. The GM@CGF hydrogel can release various effective molecules to rapidly initiate wound repair, stimulate the expressions of type I collagen, transform growth factor β1, epidermal growth factor, and vascular endothelial growth factor, promote the production of granulation tissues, vascular regeneration and reconstruction, collagen deposition, and epidermal cell migration, as well as prevent excessive scar formation. In conclusion, the injectable GM@CGF hydrogel can release various growth factors and provide a 3D spatial structure to accelerate wound repair, thereby providing a foundation for the clinical application and translation of CGF.  相似文献   
100.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号