首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17547篇
  免费   3158篇
  国内免费   2105篇
化学   12735篇
晶体学   184篇
力学   1025篇
综合类   103篇
数学   1817篇
物理学   6946篇
  2024年   49篇
  2023年   398篇
  2022年   541篇
  2021年   660篇
  2020年   739篇
  2019年   716篇
  2018年   633篇
  2017年   570篇
  2016年   859篇
  2015年   827篇
  2014年   998篇
  2013年   1265篇
  2012年   1591篇
  2011年   1523篇
  2010年   1061篇
  2009年   988篇
  2008年   1097篇
  2007年   1036篇
  2006年   943篇
  2005年   849篇
  2004年   611篇
  2003年   516篇
  2002年   510篇
  2001年   398篇
  2000年   358篇
  1999年   425篇
  1998年   345篇
  1997年   337篇
  1996年   318篇
  1995年   275篇
  1994年   225篇
  1993年   198篇
  1992年   156篇
  1991年   135篇
  1990年   157篇
  1989年   111篇
  1988年   76篇
  1987年   54篇
  1986年   59篇
  1985年   59篇
  1984年   30篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   10篇
  1977年   3篇
  1957年   2篇
  1942年   2篇
  1930年   2篇
  1916年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
The application of metal–organic polyhedra as “molecular flasks” has precipitated a surge of interest in the reactivity and property of molecules within well‐defined spaces. Inspired by the structures of the natural enzymatic pockets, three metal–organic neutral molecular tetrahedral, Ce‐TTS, Ce‐TNS and Ce‐TBS (H6TTS: N′,N′′,N′′′‐nitrilotris‐4,4′,4′′‐(2‐hydroxybenzylidene)‐benzohydrazide; H6TNS: N′,N′′,N′′′‐nitrilotris‐6,6′,6′′‐(2‐hydroxybenzylidene)‐2‐naphthohydrazide; H6TBS: 1,3,5‐ phenyltris ‐4,4′,4′′‐(2‐hydroxybenzylidene)benzohydrazide), which exhibit different size of the edges and cavities, were achieved through self‐assembly by incorporating robust amide‐containing tridentate chelating sites into the fragments of the ligands. They acted as molecular flasks to prompt the cyanosilylation of aldehydes with excellent selectivity towards the substrates size. The amide groups worked as trigger sites and catalytic driven forces to achieve efficient guest interactions, enforcing the substrates proximity within the cavity. Experiments on catalysts with the different cavity radii and substrates with the different molecular size demonstrated that the catalytic performance exhibited enzymatical catalytic mechanism and occurred in the molecular flask. These amides were also able to amplify guest‐bonding events into the measurable outputs for the detection of concentration variations of the substrates, providing the possibility for metal–organic hosts to work as smart molecular flasks for the luminescent tracing of catalytic reactions.  相似文献   
982.
Anisotropic noble‐metal structures are attracting increasing attention because of interesting size‐ and shape‐dependent properties and have emerging applications in the fields of optics and catalysis. However, it remains a significant challenge to overcome chemical contributions and acquire molecular insight into the relationship between Raman enhancement and photocatalytic activity. This study gives visualized experimental evidence of the anisotropic spatial distribution of Raman signals and photocatalytic activity at the level of single nanometer‐thin Au microtriangles and microhexagons. Theoretical simulations indicate an anisotropic spatial distribution and sharpness‐dependent strength of the electric‐field enhancement. Analysis by using statistical surface‐enhanced Raman scattering (SERS) supports this view, that is, Raman enhancement is on the order of corner>edge>face for a single microplate, but SERS measurements at different depths of focus also imply a concentration‐dependent feature of SERS signals, especially at the corners and edges. Similarly, the SERS signals of product molecules in plasmonic photocatalysis also exhibit asymmetrical strengths at different corners of the same microplate. However, by examining the variations in the relative intensities of the SERS peaks, the difference in the photocatalytic activities at the corners, edges, and faces has been successfully calculated and is highly consistent with electric‐field simulations, thus indicating that an increased number of molecules adsorbed at specific sites does not necessarily lead to a higher conversion ratio in noble‐metal photocatalysis. Our strategy weakens the assumed impact of plasmonic local heating and, to a certain extent, excludes the influence of concentration effects and chemical contributions in noble‐metal photocatalysis, thus clearly profiling plasmon‐related characteristics. This study also promises a new research direction to understand the enhancement mechanism of SERS‐active structures.  相似文献   
983.
Metal carbide species have been proposed as a new type of chemical entity to activate methane in both gas‐phase and condensed‐phase studies. Herein, methane activation by the diatomic cation MoC+ is presented. MoC+ ions have been prepared and mass‐selected by a quadrupole mass filter and then allowed to interact with methane in a hexapole reaction cell. The reactant and product ions have been detected by a reflectron time‐of‐flight mass spectrometer. Bare metal Mo+ and MoC2H2+ ions have been observed as products, suggesting the occurrence of ethylene elimination and dehydrogenation reactions. The branching ratio of the C2H4 elimination channel is much larger than that of the dehydrogenation channel. Density functional theory calculations have been performed to explore in detail the mechanism of the reaction of MoC+ with CH4. The computed results indicate that the ethylene elimination process involves the occurrence of spin conversions in the C?C coupling (doublet→quartet) and hydrogen atom transfer (quartet→sextet) steps. The carbon atom in MoC+ plays a key role in methane activation because it becomes sp3 hybridized in the initial stages of the ethylene elimination reaction, which leads to much lower energy barriers and more stable intermediates. This study provides insights into the C?H bond activation and C?C coupling involved in methane transformation over molybdenum carbide‐based catalysts.  相似文献   
984.
A liquid/liquid interfacial reaction system was designed to fabricate α‐Fe2O3 cubes. The reaction system uses a hydrophobic ionic liquid containing iron ions ([(C8H17)2(CH3)2N]FeCl4) for manufacturing α‐Fe2O3 cubes by a novel and environmentally friendly hydrothermal method under low‐temperature conditions (140 °C). The iron‐containing ionic liquid is hydrophobic and can form a liquid/liquid interface with water, which is vital for fabrication of the α‐Fe2O3 cubes. Nanomaterials synthesized from hydrophobic iron‐containing ionic liquids show good crystallinity, well‐developed morphology, and uniform size. The effect of different ionic liquids on the morphology of α‐Fe2O3 was investigated in detail. [(C8H17)2(CH3)2N]FeCl4 is assumed to perform the triple role of forming a liquid/liquid interface with water and acting as reactant and template at the same time. The effect of the reaction temperature on the formation of the α‐Fe2O3 cubes was also studied. Temperatures lower or higher than 140 °C are not conducive to formation of the α‐Fe2O3 cubes. Their photoelectrochemical properties were tested by means of the transient photocurrent response of electrodes modified with as‐prepared α‐Fe2O3 cubes. The photocurrent response of an α‐Fe2O3 cubes/indium tin oxide electrode is high and stable, and it shows great promise as a photoelectrochemical glucose sensor with high sensitivity and fast response, which are beneficial to practical applications of nanosensors.  相似文献   
985.
A series of tunable G0–G3 dendritic 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP) ligands was prepared by attaching polyaryl ether dendrons onto the four phenyl rings on the P atoms. Their ruthenium complexes were employed in the asymmetric hydrogenation of β‐ketoesters, α‐ketoesters, and α‐ketoamides to reveal the effects of dendron size on the catalytic properties. The second‐ and third‐generation catalysts exhibited excellent enantioselectivities, which are remarkably higher than those obtained from the small molecular catalysts and the first‐generation catalyst. Molecular modeling indicates that the incorporation of bulky dendritic wedges can influence the steric environments around the metal center. In addition, the ruthenium catalyst bearing a second‐generation dendritic ligand could be recycled and reused seven times without any obvious decrease in enantioselectivity.  相似文献   
986.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   
987.
Some novel 1,4-distyrylbenzene (DSB) and 4,4′-distyrylbiphenyl (DSBP) fluorescent brighteners (FBs) were used to dye polyester and cotton fabrics. The CIE whiteness, color hue and reflectance spectrum of dyed fabrics were compared. DSBP derivatives could dye the cotton and polyester fabrics with a higher whiteness level and had a lower fluorescent quenching concentration than DSB derivatives. The color hue for the fabric dyed with DSB FBs was yellow-green, whereas that dyed with DSBP was blue–violet. The molecular arrangement in the fiber had a significant influence on their optical properties, resulting in different coloring properties. The increase in molecule planarity and rigidity generated by the interaction between the polymer and FB molecules caused a remarkable bathochromic shift in emission and excitation spectra. The H-aggregate of the DSB molecule in the fiber was easily generated, and the degree of aggregation increased with the molecular polarity. However, the aggregation of DSBP molecules in the polyester and cotton fiber was not found. The surface region of the cotton fiber was filled with FB molecules, whereas FB molecules in the polyester fiber aggregated easily, and incident light could pass through the surface region.  相似文献   
988.
Using ionic liquid 1-allyl-3-methylimidazolium chloride as reaction medium, a series of novel cellulose esters containing phosphorus including cellulose diphenyl phosphate (C-Dp) and cellulose acetate (CA)–diphenyl phosphate mixed esters was synthesized homogeneously. The degree of substitution was well controlled by altering reaction conditions, such as the molar ratio of the acylating reagents/anhydroglucose unit and reaction time. The structure and thermal properties of cellulose esters were characterized by FTIR, NMR, wide-angle X-ray powder diffraction and differential scanning calorimetry. All the products possessed excellent solubility in some common organic solvents, and transparent films of cellulose esters were obtained by solution casting. In contrast to C-Dp, CA–diphenyl phosphate mixed esters showed clear glass transitions. More interestingly, these cellulose mixed esters exhibited thermoplastic behavior and could be processed by traditional melt processing methods.  相似文献   
989.
Semi-diluted Xanthan solution has been widely used in various fields, especially in enhancing oil recovery. The oscillatory shear and flow shear behaviors of Xanthan are important to oil flooding. The oscillatory shear relates to molecular motions, while flow shear reflects flowing characterization. In oscillatory shear mode, the storage modulus, loss modulus and tanδ has been measured. Calculating relaxation spectra through storage modulus, we found that the peak of segments’ relaxation heads to smaller relaxation time side. Also, the quantity of relaxation units increases as concentration increases. However, the relaxation time spectra are less affected by salinity. In flow shear mode, the relationship between shear rate and viscosity has been investigated. As concentration or salinity increases, the pseudoplastic of Xanthan solutions becomes more obvious. Furthermore, primary normal stress differences of Xanthan semi-diluted solutions lightly increase at first then sharply decrease as shear rate increases. This abnormal phenomenon may refer to wall slip.  相似文献   
990.
Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that in situ small angle neutron scattering studies of pretreatment can provide. This approach could be useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号