首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   48篇
  国内免费   12篇
化学   958篇
晶体学   6篇
力学   48篇
数学   316篇
物理学   266篇
  2023年   7篇
  2022年   28篇
  2021年   30篇
  2020年   23篇
  2019年   29篇
  2018年   28篇
  2017年   25篇
  2016年   58篇
  2015年   44篇
  2014年   54篇
  2013年   107篇
  2012年   93篇
  2011年   105篇
  2010年   60篇
  2009年   81篇
  2008年   101篇
  2007年   89篇
  2006年   90篇
  2005年   72篇
  2004年   66篇
  2003年   59篇
  2002年   65篇
  2001年   17篇
  2000年   19篇
  1999年   14篇
  1998年   13篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   14篇
  1993年   16篇
  1992年   21篇
  1991年   7篇
  1990年   5篇
  1989年   12篇
  1988年   7篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   19篇
  1983年   12篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有1594条查询结果,搜索用时 15 毫秒
61.
An integrative approach based on the combined use of both experiments and modelling is discussed here aimed at investigating metal–polyelectrolyte interactions in solution. Electrochemical techniques are applied because of their potential to measure the actual speciation without disturbing the solution physico–chemical equilibrium. The experimental methodologies are complementary since the ranges of applicability depend on the solution composition itself. To complement and interpret the results of these experimental techniques, a physico–chemical association model, based on the so-called ‘chemical model’ of counterion condensation theory, is used. The model considers that, in addition to the usual electrostatic interactions and entropic effects, territorial affinity and chemical bonding interactions take place between the small counterions in solution and the polyelectrolyte. A number of particular cases of metal/polyelectrolyte systems are discussed aimed at showing that the integrative approach leads to additional information about the solution system which can not be deduced from experimental results solely. Future challenges with respect to the applications in the study of natural aquatic systems are pointed out.  相似文献   
62.
The hydroxo compounds [Re(OH)(CO)(3)(N-N)] (N-N=bipy, 2 a; Me(2)-bipy, 2 b) were prepared in a biphasic H(2)O/CH(2)Cl(2) medium by reaction of [Re(OTf)(CO)(3)(N-N)] with KOH. In contrast, when anhydrous CH(2)Cl(2) was used, the binuclear hydroxo-bridged compound [[Re(CO)(3)(bipy)](2)(mu-OH)]OTf (3-OTf) was obtained. Compound [Re(OH)(CO)(3)(Me(2)-bipy)] (2 b) reacted with phenyl acetate or vinyl acetate to afford [Re(OAc)(CO)(3)(Me(2)-bipy)] (4) and phenol or acetaldehyde, respectively. The reactions of [Mo(OH)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1), 2 a, and 2 b toward several unsaturated organic electrophiles were studied. The reaction of 1 with (p-tolyl)isocyanate afforded an adduct of N,N'-di(p-tolyl)urea and the carbonato-bridged compound [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-eta(1)(O),eta(1)(O)-CO(3))] (5). In contrast, the reaction of 2 a with phenylisocyanate afforded [Re(OC(O)NHPh)(CO)(3)(bipy)] (6); this results from formal PhNCO insertion into the O-H bond. On the other hand, compounds [Mo[SC(O)NH(p-tolyl)](eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (7), [Re[SC(O)NH(p-tolyl)](CO)(3)(Me(2)-bipy)] (8 a), and [Re[SC(O)NHEt](CO)(3)(Me(2)-bipy)] (8 b) were obtained by reaction of 1 or 2 b with the corresponding alkyl or aryl isothiocyanates. In those cases, RNCS was inserted into the M-O bond. The reactions of 1, 2 a, and 2 b with dimethylacetylenedicarboxylate (DMAD) gave the complexes [Mo[C(OH)-C(CO(2)Me)C(CO(2)Me)-O](eta(3)-C(3)H(4)-Me-2)(CO)(phen)] (9) and [Re[C(OH)C(CO(2)Me)C(CO(2)Me)O](CO)(2)(N-N)] (N-N=bipy, 10 a; Me(2)-bipy, 10 b). The molecules of these compounds contain five-membered metallacycles that are the result of coupling between the hydroxo ligand, DMAD, and one of the CO ligands. The new compounds were characterized by a combination of IR and NMR spectroscopy, and for [[Re(CO)(3)(bipy)(2)(mu-OH)]BF(4) (3-BF(4)), 4, 5, 6, 7, 8 b, 9, and 10 b, also by means of single-crystal X-ray diffraction.  相似文献   
63.
A general strategy for knowledge flow concerning skin sensitization based on the combined use of TOPS-MODE and DEREK expert system is proposed. TOPS-MODE is used as a knowledge generator, while DEREK represents the knowledge archive. A TOPS-MODE classification model allows the identification of structural fragments and groups responsible for strong/moderate skin sensitization. These structural contributions are sorted, analyzed, and graphically displayed in an appropriate way allowing the identification of several structural alerts for skin sensitization. Nine structural alerts already implemented in DEREK are identified using this strategy. They comprise, among others, alkyl halides, aldehydes, alpha,beta-unsaturated compounds, aromatic amines, phenols, hydroquinone, isothiazolinone, and alkyl sulfonates. Four new hypotheses are generated using TOPS-MODE structural contributions to skin sensitization, which are not recognized as structural alerts by DEREK. They include the reduction of aromatic nitro groups and epoxidation reaction of double bonds as metabolic activation steps that can lead to reactive haptens which can trigger the skin sensitization mechanism. Another new alert is based on 1,2,5-thiadiazole-1,1-dioxide for which we have identified a possible mechanism explaining its strong skin sensitization profile. It is based on the existence of a tautomeric equilibrium and further reaction with nucleophiles, which are both supported by experimental evidence. Finally, we have identified a possible new mechanism for the skin sensitization of nonreactive compounds, which involves the formation of noncovalent complexes with proteins in a processing- and metabolism-independent way.  相似文献   
64.
The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-alpha-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-alpha-methylbenzylamino-5-carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E)-octa-2,6- diendioate with lithium N-alpha-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.  相似文献   
65.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   
66.
Complexes [Re(ONCMe2)(CO)3(bipy)] (1) and [Re(ONCMe2)(CO)3(phen)] (2), synthesized by reaction of the respective triflato precursors [Re(OTf)(CO)3(N-N)] (N-N = bipy, phen) with KONCMe2, feature O-bonded monodentate oximato ligands. Compound [Re(CO)3(phen)(HONCMe2)]BAr'4 (3), with a monodentate N-bonded oxime ligand, was prepared by reaction of [Re(OTf)(CO)3(phen)], HONCMe2, and NaBAr'4. Deprotonation of 3 afforded 2. The oximato complexes reacted with p-tolylisocyanate, p-tolylisothiocyanate, maleic anhydride, and tetracyanoethylene, affording the products of the insertion of the electrophile into the Re-O bond, compounds 4-7. One representative of each type of compound was fully characterized, including single-crystal X-ray diffraction. The reactions of 1 and 2 with dimethylacetylenedicarboxylate were found to involve first an insertion as the ones mentioned above but followed by incorporation of water, loss of acetone, and formation of the charge-separated neutral amido complexes 9 and 10. The structure of 9 and 10 was determined by X-ray diffraction, and key features of their electronic distribution were studied using a topological analysis of the electron density as obtained from the Fourier map.  相似文献   
67.
A new synthesis of the pyrrolo[1,2-a]pyrazine system from pyrrole is described. In light of the ab initio calculations carried out on this heterocyclic system some of its basic chemistry was investigated and included electrophilic substitution, addition of organolithium reagents, metalation with lithium diisopropylamide and subsequent reaction with electrophiles, and formation of salts by quaternization of the nonbridgehead nitrogen. N-ylides obtained from these salts undergo 1,3-dipolar cycloaddition with suitable dipolarophiles to give dipyrrolo[1,2-a]pyrazines, pyrazolo[1,5-a]-pyrrolo[2,1-c]pyrazines, and heterobetaines. Examples of intramolecular 1,3-dipolar cycloadditions are also reported.  相似文献   
68.
This paper describes a microfluidics-based sensing system that relies on electrochemical detection and electrogenerated chemiluminescent (ECL) reporting. The important result is that the ECL reporting reaction is chemically decoupled from the electrochemical sensing reaction. That is, the electrochemical sensing reaction does not participate directly in the ECL process, but because electrochemical cells require charge balance, the sensing and ECL reactions are electrically coupled. This provides a convenient and sensitive means for direct photonic readout of electrochemical reactions that do not directly participate in an ECL reaction and thus broadens the spectrum of redox compounds that can be detected by ECL. The approach can be implemented in either a two-electrode or bipolar (single-electrode) configuration. By manipulating the placement and dimensions of the conductors, the photonic response can be enhanced. The system is used to electrochemically detect benzyl viologen present in solution and report its presence via Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) luminescence.  相似文献   
69.
We have studied theoretically the partition equilibrium of a cationic drug between an electrolyte solution and a membrane with pH-dependent fixed charges using an extended Donnan formalism. The aqueous solution within the fixed charge membrane is assumed to be in equilibrium with an external aqueous solution containing six ionic species: the cationic drug (DH(+)), the salt cations (Na(+) and Ca(2+)), the salt anion (Cl(-)), and the hydrogen and hydroxide ions. In addition to these mobile species, the membrane solution may also contain four fixed species attached to the membrane chains: strongly acid sulfonic groups (SO(3)(-)), weakly acid carboxylic groups in dissociated (COO(-)) and neutral (COOH) forms, and positively charged groups (COO...Ca(+)) resulting from Ca(2+) binding to dissociated weakly acid groups. The ionization state of the weak electrolyte groups attached to the membrane chains is analyzed as a function of the local pH, salt concentration, and drug concentration in the membrane solution, and particular attention is paid to the effects of the Ca(2+) binding to the negatively charged membrane fixed groups. The lipophilicity of the drug is simulated by the chemical partition coefficient between the membrane and external solutions giving the tendency of the drug to enter the membrane solution due to hydrophobic interactions. Comparison of the theoretical results with available experimental data allows us to explain qualitatively the effects that the pH, salt concentration, drug concentration, membrane fixed charge concentration, and Ca(2+) binding exert on the ionic drug equilibrium. The role of the interfacial (Donnan) electric potential difference between the membrane and the external solutions on this ionic drug equilibrium is emphasized throughout the paper.  相似文献   
70.
Triflate abstraction from the complex [Re(OTf)(CO)(3)(bipy)] (1) using the salt NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl) in dichloromethane solution in the presence of L = PPh(3), NCMe, NCPh, imines, ketones, Et(2)O, THF, MeOH, and MeI affords cationic complexes [Re(L)(CO)(3)(bipy)](+) as their BAr'(4)(-) salts. The new complexes have been characterized spectroscopically and, for [Re(eta(1)-O=C(Me)R)(CO)(3)(bipy)]BAr'(4) (R = CH(3), 6a; R = Ph, 6b), and [Re(THF)(CO)(3)(bipy)]BAr'(4) (9), also by single-crystal X-ray diffraction. Compared with conventional methodologies, the route reported here allows the coordination of a broader range of weakly coordinating ligands and requires considerably milder conditions. On the other hand, the reactions of lithium acetylides with [Re(THF)(CO)(3)(bipy)]BAr'(4) (9) can be used for the high-yield syntheses of rhenium alkynyls [Re(Ctbd1;CR)(CO)(3)(bipy)] (R = Ph, 12; R = SiMe(3), 13). Complex 9 was found to catalyze the aziridination of benzylideneaniline with ethyl diazoacetate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号