A novel class of chiral luminescent square‐planar platinum complexes with a π‐bonded chiral thioquinonoid ligand is described. Remarkably the presence of this chiral organometallic ligand controls the aggregation of this square planar luminophor and imposes a homo‐ or hetero‐chiral arrangement at the supramolecular level, displaying non‐covalent Pt–Pt and π–π interactions. Interestingly these complexes are highly luminescent in the crystalline state and their photophysical properties can be traced to their aggregation in the solid state. A TD‐DFT calculation is obtained to rationalize this unique behavior. 相似文献
We have synthesized doubly thermosensitive core-shell microspheres composed of chemically cross-linked poly(N-n-propyl acrylamide-co-styrene) (P(nPA-co-S)) with different styrene contents as the core and linear poly(N,N-diethyl acrylamide) (PDEA), poly(N-isopropyl acrylamide) (PiPA), or poly(N-isopropyl methacrylamide) (PiPMA) as the shells. The morphologies and swelling properties of the core and the core-shell microspheres have been studied. The P(nPA-co-S) copolymers have a similar volume phase transition temperature regardless of the styrene content, indicating a two-layer structure in the microspheres with a PS-rich inner core and a PnPA-rich outer layer resulting from soap-free emulsion polymerization in water. Upon the addition of the second shell composed of linear thermosensitive polymers, the core-shell microspheres display a two-step shrinking behavior when heated. The P(nPA-co-S) core exhibits a volume phase transition temperature at 13-15 degrees C, while the shells of PDEA, PiPA, and PiPMA have volume phase transition temperatures at 28, 32, and 42 degrees C, respectively. The core-shell microspheres are composed of three layers and possess two volume phase transition temperatures. 相似文献
The effectiveness of applying a pulsed corona discharge to the destruction of olfactory pollution in air was investigated.
This paper presents a comparative study of the decomposition of three representative sulfide compounds in diluted concentrations:
hydrogen sulfide (H2S), dimethyl sulfide (DMS), and ethanethiol (C2H5SH), which could be completely removed when a sufficient but reasonable energy density was deposited in the gas. DMS showed
the lowest energy cost (around 30 eV/molecules); C2H5SH and H2S had an EC of respectively 45 eV and 115 eV. The efficiency of the non-thermal plasma process increased with decreasing the
initial concentration of sulfide compounds, while the energy yield remained almost unchanged. SO2 was the only identified byproduct of H2S decomposition, but the sulfur balance suggests the formation of undetected SO3. The byproducts analyzed during the degradation of DMS and C2H5SH enabled to propose a reaction mechanism, starting with radical attack and breaking of C–S bonds. 相似文献
We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonalizing a nonsymmetric estimator of the Hamiltonian matrix in the space spanned by the wave function and its derivatives with respect to the parameters, making use of a strong zero-variance principle. In the less computationally expensive perturbative method, the parameter variations are calculated by approximately solving the generalized eigenvalue equation of the linear method by a nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state functions (CSFs) for the C2 molecule, including both valence and core electrons in the calculation. The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF, and orbital parameters. The perturbative method is a good alternative for the optimization of just the CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo level, we observe for the C2 molecule studied here, and for other systems we have studied, that as more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy improves monotonically, implying that the nodal hypersurface also improves monotonically. 相似文献
Treatment of 2-methylphenols with chloro(diphenyl)-lambda(3)-iodane led to their regioselective dearomatizing 2-phenylation into cyclohexa-2,4-dienone derivatives via a proposed ligand coupling reaction. In the same vein of investigation, treatment of 2-methylanilines with the lambda(5)-iodane 2-iodoxybenzoic acid IBX reagent led to their regioselective dearomatization into previously undescribed ortho-quinol imines. 相似文献
The reaction of tris(alkylthio)tetrathiafulvalene thiolates with 3-chloro-2,4-pentanedione affords tetrathiafulvalene (TTF) moieties substituted by the acetylacetone function (TTFSacacH), precursors of novel redox-active ligands: the acetylacetonate ions (TTFSacac). These TTFSacacHs have been characterized by X-ray diffraction analyses, and similar trends have been observed, such as a TTF core almost planar and the acetylacetone substituent located in a plane almost perpendicular to the plane formed by the TTF core. Their chelating ability has been demonstrated by the formation of the corresponding M(TTFSacac)2(pyridine)2 complexes in the presence of M(II)(OAc)2.H2O (M = Ni2+, Zn2+). These complexes with TTFSacac moieties, Ni(TTFSacac)2(pyridine)2, 6b, and Zn(TTFSacac)2(pyridine)2, 7b, have been characterized by X-ray diffraction analyses, showing in all structures the metal(II) center chelated by two TTFacac units in the equatorial plane and the octahedral coordination geometry around the metal completed by two axial pyridine ligands. Cyclic voltammetry and UV-visible-near infrared spectroscopic measurements have evidenced a sizable interaction between the two electroactive ligands and the stabilization of a mixed-valence state in the one-electron oxidized complexes. 相似文献
Films of titanate nanosheets (approx. 1.8-nm layer thickness and 200-nm size) having a lamellar structure can form electrolyte-filled semi-permeable channels containing tetrabutylammonium cations. By evaporation of a colloidal solution, persistent deposits are readily formed with approx. 10-μm thickness on a 6-μm-thick poly(ethylene-terephthalate) (PET) substrate with a 20-μm diameter microhole. When immersed in aqueous solution, the titanate nanosheets exhibit a p.z.c. of − 37 mV, consistent with the formation of a cation conducting (semi-permeable) deposit. With a sufficiently low ionic strength in the aqueous electrolyte, ionic current rectification is observed (cationic diode behaviour). Currents can be dissected into (i) electrolyte cation transport, (ii) electrolyte anion transport and (iii) water heterolysis causing additional proton transport. For all types of electrolyte cations, a water heterolysis mechanism is observed. For Ca2+ and Mg2+ions, water heterolysis causes ion current blocking, presumably due to localised hydroxide-induced precipitation processes. Aqueous NBu4+ is shown to ‘invert’ the diode effect (from cationic to anionic diode). Potential for applications in desalination and/or ion sensing are discussed.
Twelve novel oxo-technetium and oxo-rhenium complexes based on N2S2-, N2SO- or N3S-tetradentate semi-rigid ligands have been synthesised and studied herein. By reacting the ligands with a slight excess of suitable [MO]3+ precursor (ReOCl3(PPh3)2 or [NBu4][99gTcOCl4]), the monoanionic complexes of general formula [MO(Ph-XN2S)]- could be easily produced in high yield. The complexes have been characterized by means of IR, electrospray mass spectrometry, elemental analysis, NMR and conductimetry. The crystal structures of [PPh4][ReO(Ph-ON2S)] 1b and [NBu4][99gTcO(Ph-ON2S)] 1c have been established. The [MO]3+ moiety was coordinated via the two deprotonated amide nitrogens, the oxygen and the terminal sulfur atoms in 1b and 1c. In both compounds, the ON2S coordination set is in the equatorial plane, and the complexes adopted a distorted square-pyramidal geometry with an axial oxo-group. The chemical and structural identity of the different prototypic complexes (rhenium, 99gTc complexes and their corresponding 99mTc radiocomplexes) have been also established by a comparative HPLC study. 相似文献
Conformational Mobility and Migration of the π Bonds of the [24]annulene. The configuration and the conformation of [24]annulene have been determined after a detailed analysis of its 1H-NMR spectrum recorded at −95°. At this temperature, molecular dynamics is practically frozen, and the spectrum can be correctly simulated considering eight magnetic sites with the relevant couplings. The [24]annulene exhibits alternation of the double and the single bonds with the CTTTCTTTCTTT sequence (C=cis, T=trans) expressing the connectivity of the double bonds. The signal of the 9 protons pointing inside the ring is 7.72 ppm at lower field than the signal of the 15 outer protons; this indicates a marked paramagnetic ring current. Molecular dynamics is revealed by the dependence of the spectrum upon the temperature; the simulation of the line shape of these spectra indicates that the [24]annulene in solution exists as an equilibrium of two conformers A and B ( B / A ≤0.05), both having the same configuration. Each of these conformers undergoes two isodynamic processes: a migration of the π bonds on the adjacent single bonds (bond shift) described by V and a conformational mobility described by K. The two conformers interconvert extremely rapidely. Conformer A complies with C3h symmetry, conformer B with C3 symmetry. The enthalpy, entropy, and free energy of activation for the processes described by V and K in the major conformer A have been determined: these processes are slower than those observed in [16]annulene. From their values, we could deduce that the resonance energy in the [24]-73annulene is negative and of the order of −9 to −10 kcal⋅mol−1. 相似文献