首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1740篇
  免费   108篇
  国内免费   4篇
化学   1115篇
晶体学   11篇
力学   72篇
数学   242篇
物理学   412篇
  2024年   2篇
  2023年   11篇
  2022年   31篇
  2021年   43篇
  2020年   59篇
  2019年   34篇
  2018年   37篇
  2017年   40篇
  2016年   77篇
  2015年   86篇
  2014年   83篇
  2013年   102篇
  2012年   159篇
  2011年   195篇
  2010年   110篇
  2009年   65篇
  2008年   151篇
  2007年   120篇
  2006年   108篇
  2005年   79篇
  2004年   57篇
  2003年   37篇
  2002年   24篇
  2001年   11篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   7篇
  1996年   16篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1964年   2篇
排序方式: 共有1852条查询结果,搜索用时 15 毫秒
91.
92.
A quantum analogue of the automorphism group of a finite graph is introduced. These are quantum subgroups of the quantum permutation groups defined by Wang. The quantum automorphism group is a stronger invariant for finite graphs than the usual automorphism group. We get a quantum dihedral group .

  相似文献   

93.
We present a review of the structural properties of LiFePO4. Depending on the mode of preparation, different impurities can poison this material. These impurities are identified and a quantitative estimate of their concentrations is deduced from the combination of X-ray diffraction analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and magnetic measurements. An optimized preparation provides samples with carbon-coated particles free of any impurity phase, insuring structural stability and electrochemical performance that justify the use of this material as a cathode element a new generation of lithium secondary batteries.  相似文献   
94.
Conformational Mobility and Migration of the π Bonds of the [24]annulene. The configuration and the conformation of [24]annulene have been determined after a detailed analysis of its 1H-NMR spectrum recorded at −95°. At this temperature, molecular dynamics is practically frozen, and the spectrum can be correctly simulated considering eight magnetic sites with the relevant couplings. The [24]annulene exhibits alternation of the double and the single bonds with the CTTTCTTTCTTT sequence (C=cis, T=trans) expressing the connectivity of the double bonds. The signal of the 9 protons pointing inside the ring is 7.72 ppm at lower field than the signal of the 15 outer protons; this indicates a marked paramagnetic ring current. Molecular dynamics is revealed by the dependence of the spectrum upon the temperature; the simulation of the line shape of these spectra indicates that the [24]annulene in solution exists as an equilibrium of two conformers A and B ( B / A ≤0.05), both having the same configuration. Each of these conformers undergoes two isodynamic processes: a migration of the π bonds on the adjacent single bonds (bond shift) described by V and a conformational mobility described by K. The two conformers interconvert extremely rapidely. Conformer A complies with C3h symmetry, conformer B with C3 symmetry. The enthalpy, entropy, and free energy of activation for the processes described by V and K in the major conformer A have been determined: these processes are slower than those observed in [16]annulene. From their values, we could deduce that the resonance energy in the [24]-73annulene is negative and of the order of −9 to −10 kcal⋅mol−1.  相似文献   
95.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   
96.
The combination of supramolecular chemistry and soft colloids as microgels represents an ambitious way to develop multi‐versatile colloidal assemblies. Hereafter, terpyridine‐functionalized poly(N‐isopropylacrylamide) (PNiPAM) microgel building blocks are shown to undergo an assemble–freeze–disassemble process. The microgel assemblies, which are controlled by monitoring the attractive and repulsive potentials between the soft colloidal particles, are then frozen by forming inter‐particle metal–terpyridine bis‐complexes upon addition of the metallic cation (such as FeII, CoII). By oxidation of the metal–terpyridine bis‐complex links, the aggregates open up, which is due to the complex dissociation releasing the connected particles in the form of single microgels. We extended our work to the development of 1D filaments and 2D membranes materials made of soft particles connected via supramolecular chemistry.  相似文献   
97.
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).  相似文献   
98.
Twelve novel oxo-technetium and oxo-rhenium complexes based on N2S2-, N2SO- or N3S-tetradentate semi-rigid ligands have been synthesised and studied herein. By reacting the ligands with a slight excess of suitable [MO]3+ precursor (ReOCl3(PPh3)2 or [NBu4][99gTcOCl4]), the monoanionic complexes of general formula [MO(Ph-XN2S)]- could be easily produced in high yield. The complexes have been characterized by means of IR, electrospray mass spectrometry, elemental analysis, NMR and conductimetry. The crystal structures of [PPh4][ReO(Ph-ON2S)] 1b and [NBu4][99gTcO(Ph-ON2S)] 1c have been established. The [MO]3+ moiety was coordinated via the two deprotonated amide nitrogens, the oxygen and the terminal sulfur atoms in 1b and 1c. In both compounds, the ON2S coordination set is in the equatorial plane, and the complexes adopted a distorted square-pyramidal geometry with an axial oxo-group. The chemical and structural identity of the different prototypic complexes (rhenium, 99gTc complexes and their corresponding 99mTc radiocomplexes) have been also established by a comparative HPLC study.  相似文献   
99.
The principal objective of this work was to develop and demonstrate a new methodology for silver nanoparticle (AgNP) detection and characterization based on asymmetric-flow field flow fractionation (A4F) coupled on-line to multiple detectors and using stable isotopes of Ag. This analytical approach opens the door to address many relevant scientific challenges concerning the transport and fate of nanomaterials in natural systems. We show that A4F must be optimized in order to effectively fractionate AgNPs and larger colloidal Ag particles. With the optimized method one can accurately determine the size, stability and optical properties of AgNPs and their agglomerates under variable conditions. In this investigation, we couple A4F to optical absorbance (UV–vis spectrometer) and scattering detectors (static and dynamic) and to an inductively coupled plasma mass spectrometer. With this combination of detection modes it is possible to determine the mass isotopic signature of AgNPs as a function of their size and optical properties, providing specificity necessary for tracing and differentiating labeled AgNPs from their naturally occurring or anthropogenic analogs. The methodology was then applied to standard estuarine sediment by doping the suspension with a known quantity of isotopically enriched 109AgNPs stabilized by natural organic matter (standard humic and fulvic acids). The mass signature of the isotopically enriched AgNPs was recorded as a function of the measured particle size. We observed that AgNPs interact with different particulate components of the sediment, and also self-associate to form agglomerates in this model estuarine system. This work should have substantial ramifications for research concerning the environmental and biological fate of AgNPs.  相似文献   
100.
A freestanding H2‐evolution electrode consisting of a copolymer‐embedded cobaloxime integrated into a multiwall carbon nanotube matrix by π–π interactions is reported. This electrode is straightforward to assemble and displays high activity towards hydrogen evolution in near‐neutral pH solution under inert and aerobic conditions, with a cobalt‐based turnover number (TONCo) of up to 420. An analogous electrode with a monomeric cobaloxime showed less activity with a TONCo of only 80. These results suggest that, in addition to the high surface area of the porous network of the buckypaper, the polymeric scaffold provides a stabilizing environment to the catalyst, leading to further enhancement in catalytic performance. We have therefore established that the use of a multifunctional copolymeric architecture is a viable strategy to enhance the performance of molecular electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号