首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   33篇
  国内免费   9篇
化学   966篇
晶体学   19篇
力学   21篇
数学   236篇
物理学   106篇
  2022年   13篇
  2021年   16篇
  2020年   16篇
  2019年   15篇
  2018年   8篇
  2017年   13篇
  2016年   26篇
  2015年   32篇
  2014年   34篇
  2013年   47篇
  2012年   86篇
  2011年   87篇
  2010年   46篇
  2009年   44篇
  2008年   76篇
  2007年   72篇
  2006年   90篇
  2005年   83篇
  2004年   93篇
  2003年   63篇
  2002年   72篇
  2001年   21篇
  2000年   26篇
  1999年   14篇
  1998年   5篇
  1997年   16篇
  1996年   15篇
  1995年   5篇
  1994年   9篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1986年   10篇
  1985年   11篇
  1984年   16篇
  1983年   6篇
  1982年   18篇
  1981年   11篇
  1980年   16篇
  1979年   12篇
  1978年   6篇
  1977年   12篇
  1976年   4篇
  1975年   7篇
  1974年   10篇
  1973年   6篇
  1972年   5篇
排序方式: 共有1348条查询结果,搜索用时 15 毫秒
81.
From the reactions between diarylzinc compounds (Ar2Zn) and the alcohol (Pr(i)2CHOH) in toluene, the compounds [ArZn(OCHPr(i)2)]2 (Ar = C6H5, C6F5, p-CF3C6H4, and 2,4,6-Me3C6H2) have been isolated and shown to exist in equilibra with the trinuclear complexes Ar2Zn3(OCHPr(i)2)4 and Ar2Zn when Ar = C6H5, C6F5, and p-CF3C6H4. The trinuclear complexes have also been prepared from reactions of the Ar2Zn compounds with the alcohol, which reveals that the ease of Zn-C(aryl) bond cleavage is sensitive to the nature of the Ar group: C6H5 > 4-CF3C6H4 > C6F5. The molecular structures of Ar2Zn3(OCHPr(i)2)4 where Ar = p-CF3C6H4 and C6F5 and [ArZn(OCHPr(i)2)]2 where Ar = C6F5, p-CF3C6H4, and 2,4,6-Me3C6H2 are reported based on single-crystal X-ray diffraction studies. The X-ray structure of Zn(p-CF3C6H4)2 is also reported. The reactivity of these new compounds toward the polymerization of propylene oxide (PO) and the copolymerization of PO and CO2 have been investigated along with related reactions involving the partial hydrolysis of the Ar2Zn and R2Zn compounds, where R = t-Bu, n-Bu, and n-Oct. These results are compared with the previous studies employing Et2Zn as an organozinc precursor.  相似文献   
82.
83.
Reaction of phenyl magnesium bromide with the ,β-unsaturated ketone 3-methyl-2,3,4,5,6,7-hexahydroind-8(9)-en-1-one, followed by an aqueous work-up, generates the pro-chiral tetra-substituted cyclopentadiene, 1-phenyl-3-methyl-4,5,6,7-tetrahydroindene, CpH, a precursor to the η5-cyclopentadienyl ligand in (Cp)2Fe and [(Cp)Fe(CO)]2(μ-CO)2. Both complexes were generated as mixtures of rac-(RR and SS)- and meso-(RS)-isomers, and in either case pure meso-isomer was isolated by crystallisation and characterised by single crystal X-ray structure, both molecules having crystallographic Ci symmetry. Reduction with Na/Hg cleaves meso-(RS)-[(Cp)Fe(CO)]2(μ-CO)2 and the resulting mixture of (R)- and (S)-[(Cp)Fe(CO)2] anions reacts with MeI to give racemic (Cp)Fe(CO)2Me, which was characterised by the X-ray crystal structure. The Cp ligand is more electron donating than (η-C5H5) as revealed by the reduction potential of the (Cp)2Fe+/(Cp)2Fe couple, E°=−0.127 V (vs. Ag  AgCl). Reaction of LiCp with ZrCl4 yields the zirconocene dichloride [Zr(Cp)2Cl2] as mixture of rac- and meso-isomers, from which pure rac-isomer is obtained as a mixture of RR and SS crystals by recrystallisation. The reaction of rac-[Zr(Cp)2Cl2] with LiMe gives rac-[Zr(Cp)2Me2]. The structures of RR-[Zr(Cp)2Cl2] and rac-[Zr(Cp)2Me2] have been determined by X-ray diffraction. The structural studies reveal the influence of the bulky substituted cyclopentadienyl ligand on the metal---Cp distances and other metric parameters.  相似文献   
84.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   
85.
86.
Resynthesis of NSC 341,964, which had been assigned structure 1 (1-[[3-(7-chloro-4-oxo-4H-3,1-benzoxazin-2-yl)phenyl]methyl]pyridinium chloride) was approached via 7-chloro-2-(3-methylphenyl)-4H-3,1-benzoxazin-4-one ( 5 ) obtained from 3-methylbenzoyl chloride ( 2 ) and 2-amino-4-chlorobenzoic acid ( 3 ) followed by dehydration in acetic anhydride. Radical bromination provided 6 which with pyridine afforded the bromide analog 7 of 1 . Ion exchange, however, gave ring-opened benzoic acid 8 rather than 1 . The original sample of NSC 341,964 also proved to be ring-opened material. However, 7 upon standing exhibited slow hydrolysis to 8 so that the structure of the original NSC 341,964 remains uncertain. A more direct route to compound 8 is also described.  相似文献   
87.
The transverse and longitudinal mechanical properties of aramid fibers like Kevlar? 29 (K29) fibers are strongly linked to their highly oriented structure. Mechanical characterization at the single fiber scale is challenging especially when the diameter is as small as 15 µm. Longitudinal tensile tests on single K29 fibers and single fiber transverse compression test (SFTCT) have been developed. Our approach consists of coupling morphological observations and mechanical experiments with SFTCT analysis by comparing analytical solutions and finite element modeling. New insights on the analysis of the transverse direction response are highlighted. Systematic loading/unloading compression tests enable to experimentally determine a transverse elastic limit. Taking account of the strong anisotropy of the fiber, the transverse mechanical response sheds light on a skin/core architecture. More importantly, results suggest that the skin of the fiber, typically representing a shell of one micrometer in thickness, has a transverse apparent modulus of 0.2 GPa. That is around more than fifteen times lower than the transverse modulus of 3.0 GPa in the core. By comparison, the measured longitudinal modulus is about 84 GPa. The stress distribution in the fiber is explored and the critical areas for damage initiation are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 374–384  相似文献   
88.
This study presents the influences of additional guest molecules such as C2H6, C3H8, and CO2 on methane hydrates regarding their thermal behavior. For this purpose, the onset temperatures of decomposition as well as the enthalpies of dissociation were determined for synthesized multicomponent gas hydrates in the range of 173-290 K at atmospheric pressure using a Calvet heat-flow calorimeter. Furthermore, the structures and the compositions of the hydrates were obtained using X-ray diffraction and Raman spectroscopy as well as hydrate prediction program calculations. It is shown that the onset temperature of decomposition of both sI and sII hydrates tends to increase with an increasing number of larger guest molecules than methane occupying the large cavities. The results of the calorimetric measurements also indicate that the molar dissociation enthalpy depends on the guest-to-cavity size ratio and the actual concentration of the guest occupying the large cavities of the hydrate. To our knowledge, this is the first study that observes this behavior using calorimetrical measurements on mixed gas hydrates at these temperature and pressure conditions.  相似文献   
89.
Cyclic tetrameric complexes have been prepared by the reaction of Pd(en)Cl2 or Pd(dapol)Cl2, or their nitrato analogues, with Na2(5'GMP) in aqueous solution, where en=1,2-diaminoethane, dapol=1,3-diamino-2-propanol, and 5'GMP=guanosine 5'-monophosphate. Addition of certain small molecules containing hydrophobic groups resulted in the expansion of the tetramer to a cyclic hexamer with strong bonding of one guest per hexameric host. At pH 5-6, the guest molecule can be a cation, anion, or neutral, and those species containing trimetylsilyl and t-butyl groups bonded the most strongly. The size of the central cavity of the [Pd(en)(5'GMP)]6 host has been estimated to be 5.2 A. Formation of the host-guest complex caused a large upfield shift (Deltadelta) of 2.5-2.9 ppm in the 1H NMR spectrum of the most highly affected guest protons, which were those in closest proximity to the guanine nucleobases. NOESY spectra were used to determine the interaction sites between the host and the guest. Apparent association constants determined at 26 degrees C and pD 5.4 for the [Pd(en)(5'GMP)]6-DSS and [Pd(en)(5'GMP)]6-t-butanol systems, where DSS is 3-(trimethylsilyl)-1-propanesulfonate anion, were 1.36+/-0.11x10(4) and 2.74+/-0.95x10(4) M(-3/2), respectively. The Pd(dapol)-5'GMP system forms hexameric host-guest complexes, similar in nature to those of the Pd(en)-5'GMP system. The molecular and crystal structures of Pd(dapol)Cl2 are also reported.  相似文献   
90.
From reactions between glycolide or lactide (4 equiv.) with 4-dimethylaminopyridine, DMAP (1 equiv.) and NaBPh(4) (1 equiv.) in benzene at 70 degrees C the cyclic ester adducts (CH(2)C(O)O)(6)NaBPh(4) and (CHMeC(O)O)(6)NaBPh(4) are formed respectively. The structures of the salts Na[(S,R,S,R,S,R)-(CH(3)CHC(O)O)(6)](2)BPh(4).CH(3)CN and (CH(2)C(O)O)(6)NaBPh(4).(CH(3)CN)(2) are reported. The cyclic esters were separated by chromatography and the structures of (CH(2)C(O)O)(6), (S,R,R,R,R,R)-(CHMeC(O)O)(6) and (S,S,R,R,R,R)-(CHMeC(O)O)(6) were determined. The (1)H and (13)C NMR data are reported for one of each of the six enantiomers of (CHMeC(O)O)(6) and the two meso isomers. The mechanism for the formation of these 18-membered rings is discussed in terms of an initial reaction between DMAP and NaBPh(4) in hot benzene that produces NaPh and DMAP:BPh(3) in the presence of the monomer lactide. The cyclic esters (CHMeC(O)O)(6) can also be obtained from the reaction between polylactide, PLA, in the presence of DMAP and NaBPh(4). The cyclic esters 3-methyl-1,4-dioxane-2,5-dione and 3,6,6-trimethyl-1,4-dioxane-2,5-dione undergo similar ring enlarging reactions to give cyclic 18-membered ring esters as determined by ESI-MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号