首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24584篇
  免费   1487篇
  国内免费   854篇
化学   18214篇
晶体学   202篇
力学   544篇
综合类   66篇
数学   3724篇
物理学   4175篇
  2023年   220篇
  2022年   316篇
  2021年   435篇
  2020年   536篇
  2019年   524篇
  2018年   472篇
  2017年   467篇
  2016年   955篇
  2015年   874篇
  2014年   980篇
  2013年   1646篇
  2012年   1988篇
  2011年   2162篇
  2010年   1334篇
  2009年   1090篇
  2008年   1801篇
  2007年   1756篇
  2006年   1568篇
  2005年   1428篇
  2004年   1201篇
  2003年   888篇
  2002年   780篇
  2001年   332篇
  2000年   312篇
  1999年   239篇
  1998年   158篇
  1997年   170篇
  1996年   198篇
  1995年   144篇
  1994年   112篇
  1993年   133篇
  1992年   117篇
  1991年   89篇
  1990年   91篇
  1989年   70篇
  1988年   69篇
  1987年   68篇
  1986年   83篇
  1985年   118篇
  1984年   97篇
  1983年   57篇
  1982年   81篇
  1981年   75篇
  1980年   87篇
  1979年   65篇
  1978年   64篇
  1977年   47篇
  1976年   53篇
  1975年   37篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Layered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution. At alkaline and neutral pH, the pore size of the COF decreases from 34 Å due to the turbostratic effect. Under highly acidic conditions (pH 1), TAPB-PDA-COF shows a faster and stronger turbostratic effect, thus causing the 2D structure to exfoliate. This yields bulk quantities of an exfoliated few/single-layer 2D COF, which was well dispersed and displayed a clear Tyndall effect (TE). Furthermore, nanopipette-based electrochemical testing also confirms the slipping of layers with increase towards acidic pH. A model of pH-dependent layer slipping of TAPB-PDA-COF was proposed. This controllable pH-dependent change in the layer structure may open a new door for potential applications in controlled gas adsorption/desorption and drug loading/releasing.  相似文献   
992.
The ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C3 conformation, the C3-symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C3 supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids. In addition, calculations at different levels (DFT, PM7, and MM3) for the 1:3 host-guest complex predict the formation of large stable columnar helical aggregates stabilized by the compact packing of the interstitial acids by π–π and CH⋅⋅⋅π interactions. The acids restrict the movement of the the star-shaped triazine cores along the stacking axis causing a template effect in the self-assembly of the complex. Theoretical predictions correlate with experimental results, since the interaction with achiral or chiral 3,4,5-(4-alkoxybenzyloxy)benzoic acids gives rise to supramolecular complexes that organize in bulk hexagonal columnar mesophases stable at room temperature with intracolumnar order. The existence of supramolecular chirality in the mesophase was determined for complexes formed by acids derived from (S)-2-octanol. Chiral aggregation was also evidenced for complexes formed in dodecane.  相似文献   
993.
Capacitive deionization is a promising technique in sea water desalination. Compared with common electrodes, mixed capacitive-deionization electrodes exhibit better performance in sea water desalination because they integrate pseudocapacitance and electric double-layer capacitance in one system. Herein, a 3D binder-free mixed capacitive-deionization electrode was fabricated by direct electrodeposition of SiW12O404− and polyaniline on a 3D exfoliated graphite carrier. In this electrode, SiW12O404−/polyaniline composite particles with a size of about 100–120 nm are dispersed homogenously on the 3D exfoliated graphite carrier. Its specific capacitance reaches 352 F g−1 at 1 A g−1. With increasing current from 1 to 20 A g−1, the specific capacitance only decays by 32 %. When employed in sea water desalination, the performance of this mixed capacitive-deionization electrode is also excellent. At 1.2 V, the salt adsorption capacity of this mixed electrode reaches 23.1 mg g−1 with a salt adsorption rate of 1.38 mg g−1 min−1 in 500 mg L−1 NaCl. The performance of this electrode is well retained after 30 cycles. The excellent sea water desalination performance originates from the synergistic effect between SiW12O404− and polyaniline. This work has developed polyoxometalate as a new material for capacitive-deionization electrodes.  相似文献   
994.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   
995.
A stereoselective synthetic route to homo- and heteroleptic facial tris-cyclometalated PtIV complexes is reported, involving the oxidative addition of 2-(2-pyridyl)- or 2-(1-isoquinolinyl)benzenediazonium salts to cis-[Pt(C^N)2] precursors, with C^N=cyclometalated 2-(p-tolyl)pyridine (tpy), 2-phenylquinoline (pq), 2-(2-thienyl)pyridine or 1-phenylisoquinoline (piq), to produce labile diazenide intermediates that undergo photochemical or thermal elimination of N2. The method allows the preparation of derivatives bearing cyclometalated ligands of low π–π* transition energies. The new complexes exhibit phosphorescence in fluid solution at room temperature arising from triplet ligand-centered (3LC) excited states, which, in the cases of the heteroleptic derivatives, involve the ligand with the lowest π–π* gap. The heteroleptic piq derivatives exhibit fluorescence and dual phosphorescence from different ligand-centered excited states in rigid media, demonstrating the potential of cyclometalated PtIV complexes as multi-emissive materials.  相似文献   
996.
997.
998.
We report the self‐assembly of a new family of hydrophobic, bis(pyridyl) PtII complexes featuring an extended oligophenyleneethynylene‐derived π‐surface appended with six long (dodecyloxy ( 2 )) or short (methoxy ( 3 )) side groups. Complex 2 , containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt???Pt≈14 Å) in both nonpolar solvents and the solid state. Dispersion‐corrected PM6 calculations suggest that this organization is driven by cooperative π–π, C?H???Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π‐stacks (dPt???Pt≈4.4 Å) stabilized by multiple π–π and C?H???Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X‐ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self‐assembly modes but also show the relevance of Pt‐bound chlorine ligands as new supramolecular synthons.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号