首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   4篇
化学   70篇
力学   2篇
数学   15篇
物理学   17篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1986年   1篇
  1983年   2篇
  1982年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1939年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
31.
The Green's function technique, suitable for analyses of spatially deformed structures, is developed in this paper and applied to phonon system. The thermodynamic and kinetic phonon properties of cylindrical quantum dots are analysed using a developed method. As a consequence of the applied new method the configurational dependence of diffusion coefficient and dot's density were included into calculations. Maximum of diffusion and minimum of density is located in central part of the cylindrical quantum dot. All thermodynamic and kinetic characteristics of quantum dot are exponentially small at low temperatures. The low phonons specific heat as well as the low thermal conductivity lead to conclusion that in cylindrical quantum dots exist more convenient conditions for appearance of electron superconductivity.  相似文献   
32.
The factors influencing the ease of the lithium aluminium hydride reduction of various 1,2-epoxycycloalkanes and 1,2-epoxyalkanes are described and discussed.  相似文献   
33.
Perylene-3,4:9,10-bis(dicarboximide) (PDI) and its derivatives are robust organic dyes that strongly absorb visible light and display a strong tendency to self-assemble into ordered aggregates, having significant interest as photoactive materials in a wide variety of organic electronics. To better understand the nature of the electronics states produced by photoexcitation of such aggregates, the photophysics of a series of covalent, cofacially oriented, pi-stacked dimers and trimers of PDI and 1,7-bis(3',5'-di-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) were characterized using both time-resolved absorption and fluorescence spectroscopy. The covalent linkage between the chromophores was accomplished using 9,9-dimethylxanthene spacers. Placing n-octyl groups on the imide nitrogen atoms at the end of the PDI chromophores not attached to the xanthene spacer results in PDI dimers having near optimal pi-stacking, leading to formation of a low-energy excimer-like state, while substituting the more sterically demanding 12-tricosanyl group on the imides causes deviations from the optimum that result in slower formation of an excimer-like excited state having somewhat higher energy. By comparison, PPDI dimers having terminal n-octyl imide groups have two isomers, whose photophysical properties depend on the ability of the phenoxy groups at the 1,7-positions to modify the pi stacking of the PPDI molecules. In general, disruption of optimal pi-stacking by steric interactions of the phenoxy side groups results in excimer-like states that are higher in energy. The corresponding lowest excited singlet states of the PDI and PPDI trimers are dimer-like in nature and suggest that structural distortions that accompany formation of the trimers are sufficient to confine the electronic interaction on two chromophores within these systems. This further suggests that it may be useful to build into oligomeric PDI and PPDI systems some degree of flexibility that allows the structural relaxations necessary to promote electronic interactions between multiple chromophores.  相似文献   
34.
Agp1 is a prototypical bacterial phytochrome from Agrobacterium fabrum harboring a biliverdin cofactor which reversibly photoconverts between a red‐light‐absorbing (Pr) and a far‐red‐light‐absorbing (Pfr) states. The reaction mechanism involves the isomerization of the bilin‐chromophore followed by large structural changes of the protein matrix that are coupled to protonation dynamics at the chromophore binding site. Histidines His250 and His280 participate in this process. Although the three‐dimensional structure of Agp1 has been solved at high resolution, the precise position of hydrogen atoms and protonation pattern in the chromophore binding pocket has not been investigated yet. Here, we present protonated structure models of Agp1 in the Pr state involving appropriately placed hydrogen atoms that were generated by hybrid quantum mechanics/molecular mechanics‐ and electrostatic calculations and validated against experimental structural‐ and spectroscopic data. Although the effect of histidine protonation on the vibrational spectra is weak, our results favor charge neutral H250 and H280 both protonated at Nε. However, a neutral H250 with a proton at Nε and a cationic H280 may also be possible. Furthermore, the present QM/MM calculations of IR and Raman spectra of Agp1 containing isotope‐labeled BV provide a detailed vibrational assignment of the biliverdin modes in the fingerprint region.  相似文献   
35.
The manipulation of electron transfer reactions at surfaces forms the cornerstone of electrodeposition and processing of materials on substrates with precise control of stoichiometry and oxidation state. However, the utility of this technique, which is mainly carried out in liquid electrolytes, is ultimately limited by the electrolysis of the solvent which limits a potential window to at best 4.8 V in nonaqueous solutions (A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, NY, 2nd edn, 2001; ref. 1) and can be up to 6 V in ionic liquids (A. P. Abbott, K. J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8, 4265-4279; ref. 2). A long-sought-after goal has been to develop a corresponding technique at the solid/gas interface in the absence of a solvent which will allow in principle a potential window in excess of 100 V (J. M. Goodings, J. Guo, A. N. Hayhurst and S. G. Taylor, Int. J. Mass Spectrom., 2001, 206, 137-151; ref. 3). This extended potential window will enable chemistry at the solid/gas interface that is not possible at the solid/liquid interface. Here we describe a new approach to gas-phase electrochemistry using a flame plasma as the electrolyte medium. We demonstrate the controlled electrochemical reduction of Cu(+) to Cu(0) at an electrode surface in a flame environment with resulting deposition of either Cu(2)O or Cu species on conducting diamond electrodes. This approach is novel in that it involves the application of an electrochemical potential difference to change the redox state of surface confined species, not the measurement of flame bore ions (as in flame ionisation detectors). This new technique will permit deposition of films and particles on surfaces with control over the oxidation state of the species. This will provide a valuable enhancement to the capabilities of materials preparation methods such as flame spray deposition.  相似文献   
36.
Dilute mixtures of n-octanal in synthetic air (up to 100 ppm) were photolyzed with fluorescent UV lamps (275-380 nm) at 298 K. The main photooxidation products were 1-hexene, CO, vinyl alcohol, and acetaldehyde. The photolysis rates and the absolute quantum yields were found to be slightly dependent on the total pressure. At 100 Torr, Φ(100) = 0.41 ± 0.06, whereas at 700 Torr the total quantum yield was Φ(700) = 0.32 ± 0.02. Two decomposition channels were identified: the radical channel C(7)H(15)CHO → C(7)H(15) + HCO and the molecular channel C(7)H(15)CHO → C(6)H(12) + CH(2)═CHOH, having absolute quantum yields of 0.022 and 0.108 at 700 Torr. The product CH(2)═CHOH tautomerizes to acetaldehyde. Carbon balance data lower than unities suggest the existence of unidentified decomposition channel(s) which substantially contributes to the photolysis. On the basis of experimental and theoretical evidence, n-octanal photolysis predominantly proceeds to form Norrish type II products as the major ones.  相似文献   
37.
Dilute mixtures of n-butanal, 3-methylbutanal, and 3,3-dimethylbutanal in synthetic air, different N(2)/O(2) mixtures, and pure nitrogen (up to 100 ppm) were photolyzed with fluorescent UV lamps (275-380 nm) at 298 K. The main photooxidation products were ethene (n-butanal), propene (3-methylbutanal) or i-butene (3,3-dimethylbutanal), CO, vinylalcohol, and ethanal. The photolysis rates and the absolute quantum yields were found to be dependent on the total pressure of synthetic air but not of nitrogen. At 100 Torr, the total quantum yield Φ(100) = 0.45 ± 0.01 and 0.49 ± 0.07, whereas at 700 Torr, Φ(700) = 0.31 ± 0.01 and 0.36 ± 0.03 for 3-methylbutanal and 3,3-dimethybutanal, respectively. Quantum yield values for n-butanal were reported earlier by Tadi? et al. (J. Photochem. Photobiol. A2001143, 169-179) to be Φ(100) = 0.48 ± 0.02 and Φ(700) = 0.32 ± 0.01. Two decomposition channels were identified: the radical channel RCHO → R + HCO (Norrish type I) and the molecular channel CH(3)CH(CH(3))CH(2)CHO → CH(2)CHCH(3) + CH(2)═CHOH or CH(3)C(CH(3))(2)CH(2)CHO → CHC(CH(3))CH(3) + CH(2)═CHOH, (Norrish type II) having the absolute quantum yields of 0.123 and 0.119 for 3-methybutanal and 0.071 and 0.199 for 3,3-dimethylbutanal at 700 Torr of synthetic air. The product ethenol CH(2)═CHOH tautomerizes to ethanal. We have performed ab initio and density functional quantum (DFT) chemical computations of both type I and type II processes starting from the singlet and triplet excited states. We conclude that the Norrish type I dissociation produces radicals from both singlet and triplet excited states, while Norrish type II dissociation is a two-step process starting from the triplet excited state, but is a concerted process from the singlet state.  相似文献   
38.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and TiO2 nanoparticles were synthesized by in situ radical polymerization of MMA in solution. The surface of TiO2 nanoparticles was modified with four gallic acid esters (octyl, decyl, lauryl and cetyl gallate). The content of gallates present on the surface of TiO2 was calculated from the TGA results. The influence of length of hydrophobic tail of amphiphilic alkyl gallates on dispersability of surface modified TiO2 nanoparticles in PMMA matrix, the molecular weight and glass transition temperature of PMMA, as well as the thermal stability of the prepared PMMA/TiO2 nanocomposites in nitrogen and air was investigated. The influence of content of TiO2 nanoparticles on the properties of these nanocomposites was also examined. The formation of a charge transfer complex between the surface Ti atoms and the gallates was confirmed by FTIR and UV spectroscopy. TEM micrographs of the PMMA/TiO2 nanocomposites revealed that degree of TiO2 aggregation can be significantly lowered by increasing the length of aliphatic part of the used gallates. The molecular weight of PMMA slightly decreases with the increase of TiO2 content, indicating that used TiO2 nanoparticles act as radical scavengers during the polymerization of MMA. The presence of surface modified TiO2 nanoparticles do not have an influence on the mobility of PMMA chain segments leading to the same values of glass transition temperature for all investigated samples. Thermal and thermo-oxidative stability of the PMMA matrix are improved by introducing TiO2 nanoparticles modified with gallates.  相似文献   
39.
The reorientational dynamics of dipoles in a series of blends of Polyethylene Glycol (PEG) and poly(amidoamine) (PAMAM) dendrimers were investigated by broadband dielectric relaxation spectroscopy (DRS). Measurements were performed over a wide range of frequency and temperature. Neat PEG exhibits three relaxation processes: the segmental process in the amorphous phase and two faster processes due to the localized motions in the amorphous regions and the rotation of hydroxyl end groups. Addition of dendrimers to the PEG matrix slows down the segmental process in the amorphous phase, but has no effect on the relaxation time of local processes in PEG. However, H-bonding which forms between the PEG oxygen and the amino groups on dendrimer surface is responsible for a shift of local processes in dendrimers to lower frequency. A detail analysis of the effect of temperature, concentration of dendrimers and molecular weight of PEG on the relaxation dynamics is offered.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号