首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3566篇
  免费   200篇
  国内免费   10篇
化学   2412篇
晶体学   9篇
力学   121篇
数学   628篇
物理学   606篇
  2024年   5篇
  2023年   46篇
  2022年   76篇
  2021年   87篇
  2020年   76篇
  2019年   102篇
  2018年   75篇
  2017年   50篇
  2016年   151篇
  2015年   125篇
  2014年   129篇
  2013年   210篇
  2012年   312篇
  2011年   337篇
  2010年   187篇
  2009年   163篇
  2008年   261篇
  2007年   236篇
  2006年   227篇
  2005年   188篇
  2004年   159篇
  2003年   117篇
  2002年   104篇
  2001年   47篇
  2000年   44篇
  1999年   27篇
  1998年   17篇
  1997年   16篇
  1996年   10篇
  1995年   6篇
  1994年   14篇
  1993年   14篇
  1992年   7篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   7篇
  1981年   9篇
  1979年   7篇
  1976年   8篇
  1975年   9篇
  1974年   8篇
  1973年   5篇
  1971年   4篇
  1929年   4篇
排序方式: 共有3776条查询结果,搜索用时 0 毫秒
101.
102.
103.
104.
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.  相似文献   
105.
Of interest here is the influence of loading rate on the stability of structures where inertia is taken into account, with particular attention to the comparison between static and dynamic buckling. This work shows the importance of studying stability via perturbations of the initial conditions, since a finite velocity governs the propagation of disturbances. The method of modal analysis that determines the fastest growing wavelength, currently used in the literature to analyze dynamic stability problems, is meaningful only for cases where the velocity of the perfect structure is significantly lower than the associated wave propagation speeds.  相似文献   
106.
107.
108.
Abstract

Desulfenylation of indol-3-yl sulfides liberates the most reactive position of the ring for further transformations. The usual procedure, utilizing Raney Nickel (P. G. Gassman, et. al., J. Am. Chem. SOC. 1974,96, 5495) offers a limited scope due to incompatibility of a number of functional groups towards the reducing agent. Based on our recent mechanistic studies of the acid-catalysed rearrangement of indol-3-yl sulfides to indol-2-yl sulfides (P. Hamel, et. al., Chem. Commun. 1989, 63; J. Org. Chem. 1992, 57, 2694), we have developed a novel, non-reductive desulfenylation method which permits easy access to 3-unsubstituted indoles bearing a wide array of substituents. Thus, 3-indolyl sulfides, readily obtained from appropriate phenylhydrazines (via Fischer indolization) or anilines (Gassman method, vide infra) are smoothly desulfenylated in good yields in trifluoroacetic acid in the presence of an appropriate nucleophilic trapping agent. Thiols proved to be very effective trapping agents and thiosalicylic acid (TSA) is a thiol of choice, being non-volatile and easily separable from reaction products.  相似文献   
109.
Nicotinic acetylcholine receptors (nAChRs) are one of the most important families in the ligand-gated ion channel superfamily due to their involvement in primordial brain functions and in several neurodegenerative pathologies. The discovery of new ligands which can bind with high affinity and selectivity to nAChR subtypes is of prime interest in order to study these receptors and to potentially discover new drugs for treating various pathologies. Predatory cone snails of the genus Conus hunt their prey using venoms containing a large number of small, highly structured peptides called conotoxins. Conotoxins are classified in different structural families and target a large panel of receptors and ion channels. Interestingly, nAChRs represent the only subgroup for which Conus has developed seven distinct families of conotoxins. Conus venoms have thus received much attention as they could represent a potential source of selective ligands of nAChR subtypes. We describe the mass spectrometric-based approaches which led to the discovery of a novel α-conotoxin targeting muscular nAChR from the venom of Conus ermineus. The presence of several posttranslational modifications complicated the N-terminal sequencing. To discriminate between the different possible sequences, analogs with variable N-terminus were synthesized and fragmented by MS/MS. Understanding the fragmentation pathways in the low m/z range appeared crucial to determine the right sequence. The biological activity of this novel α-conotoxin (α-EIIA) that belongs to the unusual α4/4 subfamily was determined by binding experiments. The results revealed not only its selectivity for the muscular nAChR, but also a clear discrimination between the two binding sites described for this receptor.  相似文献   
110.
The coupling between an electrochemical cell (EC) and a mass spectrometer (MS) is a useful screening tool (EC-MS) to study the oxidative transformation pathways of various electroactive species. For that purpose, we showed that the EC-MS method, carried out in the presence and absence of isotope 18O labeled water leads not only to a fast identification of oxidation products but also leads to a fast elucidation of the mechanism pathway reaction. We examined herein the case of the electrochemical hydrolysis of activated aromatic ether. Acebutolol (β-blockers) was selected herein as model of activated aromatic ether, and its electrochemical oxidation was examined in both the presence and absence of isotope 18O labeled water. To elucidate electrochemical hydrolysis pathway reaction: O-dealkylation or O-dealkoxylation, our approach was used to prove its applicability. The electrochemical oxidation mechanism was then elucidated showing an O-dealkoxylation reaction. In addition, density functional theory (DFT) calculations fully support the experimental conclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号