首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75547篇
  免费   12433篇
  国内免费   7304篇
化学   52173篇
晶体学   662篇
力学   4748篇
综合类   310篇
数学   8336篇
物理学   29055篇
  2024年   279篇
  2023年   1629篇
  2022年   2753篇
  2021年   2966篇
  2020年   3166篇
  2019年   2963篇
  2018年   2606篇
  2017年   2360篇
  2016年   3624篇
  2015年   3504篇
  2014年   4189篇
  2013年   5373篇
  2012年   6875篇
  2011年   6888篇
  2010年   4524篇
  2009年   4292篇
  2008年   4692篇
  2007年   4212篇
  2006年   3848篇
  2005年   3222篇
  2004年   2499篇
  2003年   1972篇
  2002年   1795篇
  2001年   1479篇
  2000年   1360篇
  1999年   1538篇
  1998年   1311篇
  1997年   1300篇
  1996年   1291篇
  1995年   1052篇
  1994年   927篇
  1993年   769篇
  1992年   677篇
  1991年   587篇
  1990年   502篇
  1989年   385篇
  1988年   335篇
  1987年   275篇
  1986年   251篇
  1985年   209篇
  1984年   153篇
  1983年   104篇
  1982年   87篇
  1981年   81篇
  1980年   74篇
  1979年   37篇
  1978年   37篇
  1977年   49篇
  1976年   33篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering “what”, “where”, “how many” and “whose” chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.

An overview of MS-based chemical mapping and profiling, indicating its contributions to the molecular understanding of diseases in precision medicine by answering "what", "where", "how many" and "whose” chemicals underlying clinical phenotypes.  相似文献   
172.
In spite of great commercial importance of the Phillips CrOx/SiO2 catalyst and long term research efforts, the precise physicochemical nature of active sites and polymerization mechanisms still remains unclear. The difficulties in a clear mechanistic understanding of this catalyst mainly come from the complexity of the surface chemistry of the amorphous silica gel support. In this work, novel silsesquioxane-supported Phillips Cr catalysts are utilized as realistic models of the industrial catalyst for theoretical investigation using the density functional theory (DFT) method in order to elucidate the effects of surface chemistry of silica gel in terms of supporting of chromium compounds and fluorination of the silica surface on the catalytic properties of the Phillips catalyst. Both qualitative and quantitative aspects with respect to various electronic properties and thermodynamic characteristics of the model catalysts were achieved. The future prospects of a state-of-the-art catalyst design and mechanistic approaches for the heterogeneous SiO2-supported Phillips catalyst has been demonstrated. The text was submitted by the authors in English.  相似文献   
173.
Aza-Morita-Baylis-Hillman reactions of N-(benzylidene)polyfluoroanilines 1 with methyl acrylate or acrylonitrile were studied. It was found that Lewis base, solvent and reaction temperature can significantly affect the reaction. Using 3-hydroxyquinuclidine (3-HQD) as a Lewis base in the reactions of 1 with methyl acrylate in DMF, the normal aza-Morita-Baylis-Hillman adducts 3 were formed in moderate to excellent yields. For the reactions of 1 with acrylonitrile, 1,4-diazabicyclo[2.2.2]octane (DABCO) is the best Lewis base giving the corresponding aza-Morita-Baylis-Hillman adducts 4 as the sole product in good to moderate yield. However, upon treatment of 1 with acrolein 2c, the corresponding reaction did not occur even in the presence of a variety of catalysts.  相似文献   
174.
We have assessed the feasibility of carrying out time- and wavelength-resolved laser-induced fluorescence measurements of radiation damage in glassy silica. The consequences of alpha decay of Es-253 in LaPO4 nanophases embedded in silica were probed based on excitation of 5f states of Cm3+, Bk3+, and Es3+ ions. The recorded emission spectra and luminescence decays showed that alpha decay of Es-253 ejected Bk-249 decay daughter ions into the surrounding silica and created radiation damage within the LaPO4 nanophases. This conclusion is consistent with predictions of an ion transport code commonly used to model ion implantation. Luminescence from the 6D7/2 state of Cm3+was used as an internal standard. Ion-ion energy transfer dominated the dynamics of the observed emitting 5f states and strongly influenced the intensity of observed spectra. In appropriate sample materials, laser-induced fluorescence provides a powerful method for fundamental investigation of alpha-induced radiation damage in silica.  相似文献   
175.
Infrared spectroscopy studies of methyl 4-hydroxybenzoate (MHB) in 17 different organic solvents and in ethanol/CCl4 binary solvent were undertaken to investigate the solvent-solute interactions. The frequencies of carbonyl stretching vibration nu(C=O) of MHB in single solvents were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSER). The assignments of the two bands of nu(C=O) of MHB in alcohols and the single one of that in non-alcoholic solvents were discussed. The shifts of nu(C=O) of MHB in ethanol/CCl4 binary solvents showed that several kinds of solute-solvent hydrogen bonding interactions coexisted in the mixture solvents, with a change in the mole fraction of ethanol in the binary solvents.  相似文献   
176.
Cholesteryl end-capped thermally responsive amphiphilic polymers with two different hydrophobic/hydrophilic chain-length ratios were synthesized from the hydroxyl-terminated random poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and cholesteryl chloroformate. The hydroxyl-terminated precursor polymers with narrow molecular weight distributions were synthesized by free-radical polymerization using 2-hydroxyethanethiol as a chain-transfer agent. The aqueous solutions of the cholesteryl end-capped copolymers exhibited reversible phase transitions at temperatures slightly above human body temperature, with the lower critical solution temperature values being 37.7 and 38.2 degrees C, respectively. The critical micelle concentration values of the two cholesteryl end-capped polymers were 9 and 25 mg/L, respectively. Polymeric micellar nanoparticles were prepared from the amphiphilic polymers using a dialysis method as well as a direct dissolution method. Transmission electron microscope studies showed that the micellar nanoparticles existed in different morphologies, including spherical, star-like, and cuboid shapes. Pyrene as a model hydrophobic compound could be readily encapsulated in these polymeric nanoparticles, at loading levels of 1.0 and 0.8 mg/g for the two cholesteryl end-capped polymers, respectively. The temperature sensitivity and unusual morphology of these novel polymeric nanoparticles would make an interesting drug delivery system.  相似文献   
177.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   
178.
The subsolidus phase relations of the PrOx-CaO-CuO pseudo-ternary system sintered at 950-1000°C have been investigated by X-ray powder diffraction. In this system, there exist one compound Ca10Pr4Cu24O41, one Ca2Pr2Cu5O10-based solid solution, seven three-phase regions and two two-phase regions. The crystal structures of Ca10Pr4Cu24O41 and Ca2Pr2Cu5O10-based solid solution have been determined. Compound Ca10Pr4Cu24O41 crystallizes in an orthorhombic cell with space group D2h20Cccm, Z=4. Its lattice parameters are a=11.278(2) Å, b=12.448(3) Å and c=27.486(8) Å. The crystal structure of Ca2Pr2Cu5O10-based solid solution is an incommensurate phase based on the orthorhombic NaCuO2 type subcell. The lattice parameters of the subcell of the Ca2.4Pr1.6Cu5O10 are a0=2.8246(7) Å, b0=6.3693(5) Å, c0=10.679(1) Å, and those of the orthorhombic superstructure are with a=5a0, b=b0, c=5c0. The Ca2.4Pr1.6Cu5O10 structure can also be determined by using a monoclinic supercell with space group C2h5P21/c, Z=4, a=5a0, b=b0, and β=104.79(1)° or 136.60(1)°, V=5a0b0c0.  相似文献   
179.
A series of dilute liquid crystalline solvents are used to study the effect of slight anisotropy caused by partial alignment on chemical shift and residual dipolar coupling (RDC) in small molecules. The residual dipolar couplings between protons in solutes are found to be almost independent of the local environment. It is also found that the chemical shift does not change over the concentration range observed. A linear relationship between residual dipolar coupling and liquid crystal concentration is observed at relatively low concentrations, but is severely violated at high concentrations.  相似文献   
180.
The first Born approximation is used to study the laser-assisted electron capture by a fast proton from a hydrogen atom. The laser modification on differential cross section peaks sharply in the forward direction. With the impact energy increasing, the change in integral cross section becomes notable. The more intense the laser, the greater the cross section is; the lower the frequency, the greater the cross section.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号