首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8592篇
  免费   203篇
  国内免费   62篇
化学   5797篇
晶体学   85篇
力学   250篇
综合类   1篇
数学   1315篇
物理学   1409篇
  2022年   82篇
  2021年   83篇
  2020年   155篇
  2019年   112篇
  2018年   84篇
  2017年   94篇
  2016年   186篇
  2015年   151篇
  2014年   196篇
  2013年   395篇
  2012年   456篇
  2011年   556篇
  2010年   281篇
  2009年   224篇
  2008年   494篇
  2007年   456篇
  2006年   443篇
  2005年   447篇
  2004年   428篇
  2003年   287篇
  2002年   308篇
  2001年   89篇
  2000年   85篇
  1999年   64篇
  1998年   79篇
  1997年   99篇
  1996年   139篇
  1995年   86篇
  1994年   71篇
  1993年   96篇
  1992年   70篇
  1991年   81篇
  1990年   77篇
  1989年   58篇
  1988年   71篇
  1987年   61篇
  1986年   55篇
  1985年   114篇
  1984年   131篇
  1983年   91篇
  1982年   113篇
  1981年   108篇
  1980年   92篇
  1979年   82篇
  1978年   108篇
  1977年   93篇
  1976年   80篇
  1975年   67篇
  1974年   67篇
  1973年   58篇
排序方式: 共有8857条查询结果,搜索用时 15 毫秒
171.
172.
Oxidation of methyl ethyl sulfide (CH3SCH2CH3, methylthioethane, MES) under atmospheric and combustion conditions is initiated by hydroxyl radicals, MES radicals, generated after loss of a H atom via OH abstraction, will further react with O2 to form chemically activated and stabilized peroxyl radical adducts. The kinetics of the chemically activated reaction between the CH3SCH2CH2• radical and molecular oxygen are analyzed using quantum Rice-Ramsperger-Kassel theory for k(E) with master equation analysis and a modified strong-collision approach to account for further reactions and collisional deactivation. Thermodynamic properties of reactants, products, and transition states are determined by the B3LYP/6-31+G(2d,p), M062X/6-311+G(2d,p), ωB97XD/6-311+G(2d,p) density functional theory, and CBS-QB3, G3MP2B3, and G4 composite methods. The reaction of CH3SCH2CH2• with O2 forms an energized peroxy adduct CH3SCH2CH2OO• with a calculated well depth of 34.1 kcal mol−1 at the CBS-QB3 level of theory. Thermochemical properties of reactants, transition states, and products obtained under CBS-QB3 level are used for calculation of kinetic parameters. Reaction enthalpies are compared between the methods. The temperature and pressure-dependent rate coefficients for both the chemically activated reactions of the energized adduct and the thermally activated reactions of the stabilized adducts are presented. Stabilization and isomerization of the CH3SCH2CH2OO• adduct are important under high pressure and low temperature. At higher temperatures and atmospheric pressure, the chemically activated peroxy adduct reacts to new products before stabilization. Addition of the peroxyl oxygen radical to the sulfur atom followed by sulfur-oxygen double bond formation and elimination of the methyl radical to form S(= O)CCO• + CH3 (branching) is a potentially important new pathway for other alkyl-sulfide peroxy radical systems under thermal or combustion conditions.  相似文献   
173.
A convergent synthesis of [S-(R,S)]-2-[4-[(4-methylpiperazin-1-yl)carbonyl]phenoxy]-3,3-diethyl-N-[1-[3,4-(methylenedioxy)phenyl]butyl]-4-oxo-1-azetidinecarboxamide (L-694,458, 1), a potent human leukocyte elastase inhibitor, was achieved via chiral synthesis of key intermediates: (S)-3,3-diethyl-4-[4'-[(N-methylpiperazin-1-yl)carbonylphenoxy]-2-azetidinone (2) and (R)-alpha-propylpiperonyl isocyanate (3). Synthesis of beta-lactam 2 was achieved by a novel enantioselective lipase hydrolysis of ester 5 to produce (S)-3,3-diethyl-4-(4'-carboxyphenoxy)-2-azetidinone (6) (60% yield, three cycles, 93% ee) with isolation, epimerization, and recycling of the undesired (R)-ester 5. Isocyanate 3 was prepared by chiral addition of Zn(n-Pr)(2) to piperonal (98% yield, 99.2% ee), azide displacement and reduction to (R)-alpha-propylpiperonylamine (11) (58% yield, 85% ee), crystallization as the D-pyroglutamic acid salt (92% yield, 98.2% ee), and isocyanate formation (98% yield) with phosgene.  相似文献   
174.
To gain better insight into the influence of the anion size and symmetry on the transport properties and thermal stability of an electrolyte based on lithium(fluorosulfonyl)(trifluoromethanesulfonyl)-imide(FTFSI)salt,we performed the physical and electrochemical characterization of an electrolyte based on FTFSI incorporated in standard binary(3 EC/7 EMC)and ternary(EC/PC/3 DMC)alkylcarbonate mixtures.By applying the Jones-Dole-Kaminsky(JDK),Eyring and Arrhenius empirical models to the electrolyte viscosity we show that the activation enthalpy and entropy energy barriers(ΔH≠,ΔS≠)for viscous flow are between 12 and 15 kJ·mol-1.They are strongly dependent on the solvent nature and are significantly lower than their symmetric anions LiFSI and LiTFSI(19-20 kJ·mol-1)in the binary mixture.Furthermore,the hydrodynamic radius,rs,calculated by JDK,and the ionicity behavior illustrated by the Walden role,showed that the FTFSI anion is outside the solvation sphere(rs>0.6 nm)which is smaller in the case of an EC/EMC solvent base.In the 3 EC/7 EMC solvent mixture,LiFTFSI is less conductive than in the ternary mixture i.e.,σmax=8.9 mS cm-1 at Cmax=1.1 mol L-1 for 3 EC/7 EMC and,σmax=10.5 mS cm-1 at max=0.7 mol L-1 for EC/PC/3 DMC,due to a strong solvation and a greater association of FTFSI ions in the binary solvent mixture.The thermal stability of FTFSI based electrolytes was determined by the shift of the evaporation temperature of the volatile solvents(DMC,EMC)in the presence of salt,towards the higher temperatures.This feature is visible on the thermograms obtained by DSC both with the liquid electrolyte and with charged LMO cathodes in presence of electrolytes.The consequences of these properties on the electrochemical behavior of a graphite(Gr)half-cell,a lithium metal(Li)anode and a manganese lithium oxide(LMO)cathode demonstrated on the one hand the formation of a thick solid electrolyte interphase(SEI)on graphite that consumed a significant amount of lithium i.e.,18%of total capacity of the first charge.Furthermore,LiFTFSI delivered 95%of the initial capacity C=360 mAh g-1 at C/10 with EC/PC/3 DMC versus 91%when it was combined with 3 EC/7 EMC C=348 mAh g-1,while the capacities obtained for LiTFSI in EC/PC/3 DMC were the lowest(C=275 mAh g-1)compared to those of the other salts.After 10 cycles,the capacity loss at C/20 is<2%for LiFSI and LiFTFSI with the two solvent mixtures.On the other hand,manganese dissolution from LMO as well as current collector corrosion were confirmed by post-mortem examination of opened coin cells.The incompatibility of the LMO cathode with an electrolyte based on FTFSI was confirmed by the position of the decomposition peak of charged LMO in contact with this electrolyte observed by DSC These results demonstrate that the nature of the anion as well as the composition of the solvent considerably influence the performance of imide-based lithium salts both on the anode,but especially on the high voltage cathode.  相似文献   
175.
Moon PG  Hwang HH  Boo YC  Kwon J  Cho JY  Baek MC 《Electrophoresis》2008,29(21):4324-4331
Many different types of urine proteome studies have been done, but urine glycoprotein studies are insufficient. Therefore, we studied the glycoproteins from rat urine, which could be used to identify biomarkers in an animal model. First, urinary proteins were prepared by using the dialysis and lyophilizing methods from rat urine. Glycoproteins enriched with lectin affinity purification, concanavalin A, jacalin and wheat germ agglutinin from the urinary proteins were separated by means of reverse-phase fast protein LC (FPLC) or 1-D PAGE. Each FPLC fraction and 1-D PAGE gel band were trypsin-digested and analyzed by means of nanoLC-MS/MS. LC-MS/MS analyses were carried out by using linear ion trap MS. A total of 318 rat urinary glycoproteins were identified from the FPLC fractions and gel bands; approximately 90% of identified proteins were confirmed as glycoproteins in Swiss-Prot. Many glycoproteins, known as biomarkers, including C-reactive protein, uromodulin, amyloid beta A4 protein, alpha-1-inhibitor 3, vitamin D-binding protein, kallikrein 3 and fetuin-A were identified in this study. By studying urinary glycoproteins collected from rat, these results may help to assist in identifying urinary biomarkers regarding various types of disease models.  相似文献   
176.
A polymer monolith bearing weak cation-exchange functionality was prepared for the purpose of demonstrating pH-selective extraction and elution in in-line solid-phase extraction-capillary electrophoresis (SPE-CE) utilising a model set of cationic analytes, namely imidazole, lutidine and 3-phenylpropanamine. Optimization of the electrolyte conditions for efficient elution of the adsorbed analytes using a moving pH boundary required that the capillary and monolith be filled with 44 mM sodium acetate at high pH (pH 6) and a low pH electrolyte of 3 mM sodium acetate pH 3 was placed in the electrolyte vials. This combination allowed the adsorbed analytes to be simultaneously eluted and focused into narrow bands, with peak widths of the eluted analytes having a baseline width of 1.2 s immediately after the monolith. Using these optimum elution conditions, the versatility of the SPE-CE approach was demonstrated by removing unwanted adsorbed components after extraction with a wash at a different pH and also by selecting a pH at which only some of the model weak bases were ionised. The analytical performance of the approach was evaluated and the relative standard deviation for peak heights, peak area and migration times were in the ranges of 1.4-5.3, 1.2-3.3 and 0.4-1.2% respectively. Analytes exhibited linear calibrations with r(2) values ranging from 0.996 to 0.999 over two orders of magnitude. Analyte pre-concentration provided excellent sensitivity, and limits of detection for the analyte used in this study were in the range 8.0-30 ng ml(-1), which was an enhancement of 63 when compared to normal hydrodynamic injection occupying 1.3% of the capillary of these bases in water.  相似文献   
177.
Using 2D proton-coupled gHSQC pulse sequences in addition to 1D 15N NMR experiments of 15N labeled systems, 15N NMR chemical shifts of a range of transition metal amido and amine complexes were determined. Tungsten(II), ruthenium(II), platinum(IV) and copper(I) complexes with aniline and their anilido variants were studied and compared to free aniline, lithium anilido and anilinium tetrafluoroborate. Upon coordination of aniline to transition metals, upfield chemical shifts of 20–60 ppm were observed. Deprotonation of the amine complexes to form amido complexes resulted in downfield chemical shifts of 40–60 ppm for all of the complexes except for the tungsten d4 system. For the tungsten(II) complexes, the cationic aniline complex displayed a downfield shift of approximately 56 ppm relative to the neutral anilido complex. The change in chemical shift for amine to amido conversion is proposed to depend on the ability of the amido ligand to π-bond with the metal center, which influences the magnitude of the paramagnetic screening term.  相似文献   
178.
JPC – Journal of Planar Chromatography – Modern TLC - A new simple, rapid, reproducible, and stability-indicatiiig highperformance thin-layer chromatographic method for analysis of...  相似文献   
179.
The kinetics of the reaction OIO+NO were studied by pulsed laser photolysis/time-resolved cavity ring-down spectroscopy, yielding k(235-320 K)=7.6(+4.0)(-3.1) x 10(-13) exp[(607+/-128)/T] cm3 molecule-1 s-1. Quantum calculations on the OIO+NO potential-energy surface show that the reactants form a weakly bound OIONO intermediate, which then dissociates to the products IO+NO2. Rice-Ramsberger-Kassel-Markus (RRKM) calculations on this surface are in good accord with the experimental result. The most stable potential product, IONO2, cannot form because of the significant rearrangement of OIONO that would be required. The reaction OIO+OH was then investigated by quantum calculations of the relevant stationary points on its potential-energy surface. The very stable HOIO2 molecule can form by direct recombination, but the bimolecular reaction channels to HO2+IO and HOI+O2 are closed because of significant energy barriers. RRKM calculations of the HOIO2 recombination rate coefficient yield krec,0=1.5x10(-27) (T/300 K)(-3.93) cm6 molecule-2 s-1, krec,infinity=5.5x10(-10) exp(46/T) cm3 molecule-1 s-1, and Fc=0.30. The rate coefficients of both reactions are fast enough around 290 K and 1 atm pressure for these reactions to play a potentially important role in the gas phase and aerosol chemistry in the marine boundary layer of the atmosphere.  相似文献   
180.
The reaction of [(C5Me5)2Ln][(mu-Ph)2BPh2] complexes with the lithium salt of (trimethylsilyl)diazomethane, Li[Me3SiCN2], gave products formulated as the dimeric isocyanotrimethylsilyl amide complexes {(C5Me5)2Ln[mu-N(SiMe3)NC]}2 (Ln = Sm, 1; La, 2). Reactions of (C5Me5)2Sm and [(C5Me5)2Sm(mu-H)]2 with Me3SiCHN2 also form 1. Complexes 1 and 2 react with Me3CCN to form the 1,2,3-triazolato complexes (C5Me5)2Ln(NCCMe3)[NNC(SiMe3)C(CMe3)N] (Ln = Sm, 3; La, 4). Complex 2 reacts with Me3SiN3 to make the isocyanide ligated azide complex {(C5Me5)2La[CNN(SiMe3)2](mu-N3)}3, 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号