首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8514篇
  免费   253篇
  国内免费   62篇
化学   5778篇
晶体学   84篇
力学   250篇
综合类   1篇
数学   1313篇
物理学   1403篇
  2022年   69篇
  2021年   81篇
  2020年   155篇
  2019年   112篇
  2018年   84篇
  2017年   94篇
  2016年   186篇
  2015年   151篇
  2014年   194篇
  2013年   395篇
  2012年   456篇
  2011年   556篇
  2010年   281篇
  2009年   223篇
  2008年   493篇
  2007年   456篇
  2006年   443篇
  2005年   447篇
  2004年   429篇
  2003年   285篇
  2002年   308篇
  2001年   89篇
  2000年   84篇
  1999年   64篇
  1998年   79篇
  1997年   99篇
  1996年   139篇
  1995年   87篇
  1994年   69篇
  1993年   97篇
  1992年   68篇
  1991年   81篇
  1990年   77篇
  1989年   58篇
  1988年   71篇
  1987年   61篇
  1986年   54篇
  1985年   113篇
  1984年   131篇
  1983年   91篇
  1982年   113篇
  1981年   108篇
  1980年   92篇
  1979年   83篇
  1978年   108篇
  1977年   94篇
  1976年   80篇
  1975年   67篇
  1974年   67篇
  1973年   58篇
排序方式: 共有8829条查询结果,搜索用时 828 毫秒
941.
Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.  相似文献   
942.
The osmotic coefficients of K2HPO4(aq) have been measured at T=298.15 K by the isopiestic vapor pressure method over the range of molalities from 1.3846 mol⋅kg−1 to 13.939 mol⋅kg−1 (oversaturation) with CaCl2(aq) as the reference solution. The molalities and osmotic coefficients of saturated solutions in equilibrium with K2HPO4xH2O(cr) were measured simultaneously by the same method. Available literature osmotic coefficients of K2HPO4(aq) at T=298.15 K, and our new experimental data, were combined and modeled using an extended form of Pitzer’s equation and the Clegg-Pitzer-Brimblecombe equation based on the mole-fraction-composition scale. These equations were used to calculate the activity coefficients of K2HPO4(aq) at T=298.15 K.  相似文献   
943.
We have investigated the HO(2) adsorption and acid dissociation process on the surface of (H(2)O)(20) and (H(2)O)(21) clusters by using quantum-chemistry calculations. Our results show that the radical forms a stable hydrogen-bond complex on the cluster. The HO(2) acid dissociation is more favorable in the case of the (H(2)O)(21) cluster, for which the inner water molecule plays a crucial role. In fact, acid dissociation of HO(2) is found to occur in two steps. The first step involves H(2) O autoionization in the cluster, and the second one involves the proton transfer from the HO(2) radical to the hydroxide anion. The presence of the HO(2) radicals on the surface of the cluster facilitates water autoionization in the cluster.  相似文献   
944.
The kibdelones are aromatic polyketide natural products featuring isoquinolinone and tetrahydroxanthone ring systems. They display potent cytotoxicity toward a range of human cancer cell lines. Here, we present an enantioselective total synthesis of kibdelone C that utilizes a Shi epoxidation to establish the absolute and relative stereochemistry, an acid-catalyzed cyclization to form the tetrahydroxanthone, and a C-H arylation to complete the hexacyclic skeleton.  相似文献   
945.
Investigation of the insertion reactivity of the tethered silylalkyl complex (η(5)-C(5)Me(4)SiMe(2)CH(2)-κC)(2)U (1) has led to a series of new reactions for U-C bonds. Elemental sulfur reacts with 1 by inserting two sulfur atoms into each of the U-C bonds to form the bis(tethered alkyl disulfide) complex (η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)S(2))(2)U (2). The bulky substrate N,N'-diisopropylcarbodiimide, (i)PrN═C═N(i)Pr, inserts into only one of the U-C bonds of 1 to produce the mixed-tether complex (η(5)-C(5)Me(4)SiMe(2)CH(2)-κC)U[η(5)-C(5)Me(4)SiMe(2)CH(2)C((i)PrN)(2)-κ(2)N,N'] (3). Carbon monoxide did not exclusively undergo a simple insertion into the U-C bond of 3 but instead formed {μ-[η(5)-C(5)Me(4)SiMe(2)CH(2)C(═N(i)Pr)O-κ(2)O,N]U[OC(C(5)Me(4)SiMe(2)CH(2))CN((i)Pr)-κ(2)O,N](2) (4) in a cascade of reactions that formally includes U-C bond cleavage, C-N bond cleavage of the amidinate ligand, alkyl or silyl migration, U-O, C-C, and C-N bond formations, and CO insertion. The reaction of 3 with isoelectronic tert-butyl isocyanide led to insertion of the substrate into the U-C bond, but with a rearrangement of the amidinate ligand binding mode from κ(2) to κ(1) to form [η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)C(═N(t)Bu)]U[η(5)-C(5)Me(4)SiMe(2)CH(2)C(═N(i)Pr)N((i)Pr)-κN] (5). The product of double insertion of (t)BuN≡C into the U-C bonds of 1, namely [η(5):η(2)-C(5)Me(4)SiMe(2)CH(2)C(═N(t)Bu)](2)U (6), was found to undergo an unusual thermal rearrangement that formally involves C-H bond activation, C-C bond cleavage, and C-C bond coupling to form the first formimidoyl actinide complex, [η(5):η(5):η(3)-(t)BuNC(CH(2)SiMe(2)C(5)Me(4))(CHSiMe(2)C(5)Me(4))]U(η(2)-HC═N(t)Bu) (7).  相似文献   
946.
Efficient drug delivery to tumors is of ever-increasing importance. Single-visit diagnosis and treatment sessions are the goal of future theranostics. In this work, a noncovalent PDT cancer drug-gold nanoparticle (Au NP) conjugate system performed a rapid drug release and deep penetration of the drug into tumors within hours. The drug delivery mechanism of the PDT drug through Au NPs into tumors by passive accumulation was investigated via fluorescence imaging, elemental analysis, and histological staining. The pharmacokinetics of the conjugates over a 7-day test period showed rapid drug excretion, as monitored via the fluorescence of the drug in urine. Moreover, the biodistribution of Au NPs in this study period indicated clearance of the NPs from the mice. This study suggests that noncovalent delivery via Au NPs provides an attractive approach for cancer drugs to penetrate deep into the center of tumors.  相似文献   
947.
A synthesis of aziridine-containing peptides via the Cu(II)-promoted coupling of unprotected peptide thioacids and N-H aziridine-2-carbonyl peptides is reported. The unique reactivity of the resulting N-acylated aziridine-2-carbonyl peptides facilitates their subsequent regioselective and stereoselective nucleophilic ring-opening to give unprotected peptides that are specifically modified at the ligation site. The aziridine-mediated peptide ligation concept is exemplified using H(2)O as the nucleophile, producing a Xaa-Thr linkage (where Xaa can be an epimerizable and hindered amino acid). The overall process is compatible with a variety of unprotected amino acid functionality, most notably the N-terminal and Lys side chain amines.  相似文献   
948.
A current goal in heterogeneous catalysis is to transfer the synthetic, as well as developing mechanistic, insights from the modern revolution in nanoparticle science to the synthesis of supported-nanoparticle heterogeneous catalysts. In a recent study (Mondloch, J. E.; Wang, Q.; Frenkel, A. I.; Finke, R. G. J. Am. Chem. Soc. 2010, 132, 9701-9714), we initialized tests of the global hypothesis that quantitative kinetic and mechanistic studies, of supported-nanoparticle heterogeneous catalyst formation in contact with solution, can provide synthetic and mechanistic insights that can eventually drive improved syntheses of composition-, size-, and possibly shape-controlled catalysts. That study relied on the development of a well-characterized Ir(1,5-COD)Cl/γ-Al(2)O(3) precatalyst, which, when in contact with solution and H(2), turns into a nonaggregated Ir(0)(~900)/γ-Al(2)O(3) supported-nanoparticle heterogeneous catalyst. The kinetics of the Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) conversion were followed and fit by a two-step mechanism consisting of nucleation (A → B, rate constant k(1)) followed by autocatalytic surface growth (A + B → 2B, rate constant k(2)). However, a crucial, but previously unanswered question is whether the nucleation and growth steps occur primarily in solution, on the support, or possibly in both phases for one or more of the catalyst-formation steps. The present work investigates this central question for the prototype Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) system. Solvent variation-, γ-Al(2)O(3)-, and acetone-dependent kinetic data, along with UV-vis spectroscopic and gas-liquid-chromatography (GLC) data, are consistent with and strongly supportive of a supported-nanoparticle formation mechanism consisting of Ir(1,5-COD)Cl(solvent) dissociation from the γ-Al(2)O(3) support (i.e., from Ir(1,5-COD)Cl/γ-Al(2)O(3)), solution-based nucleation from that dissociated Ir(1,5-COD)Cl(solvent) species, fast Ir(0)(n) nanoparticle capture by γ-Al(2)O(3), and then subsequent solid-oxide-based nanoparticle growth from Ir(0)(n)/γ-Al(2)O(3) and with Ir(1,5-COD)Cl(solvent), the first kinetically documented mechanism of this type. Those data disprove a solid-oxide-based nucleation and growth pathway involving only Ir(1,5-COD)Cl/γ-Al(2)O(3) and also disprove a solution-based nanoparticle growth pathway involving Ir(1,5-COD)Cl(solvent) and Ir(0)(n) in solution. The present mechanistic studies allow comparisons of the Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) supported-nanoparticle formation system to the kinetically and mechanistically well-studied, Ir(1,5-COD)·P(2)W(15)Nb(3)O(62)(8-) to Ir(0)(~300)·(P(2)W(15)Nb(3)O(62)(8-))(n)(-8n) solution-based, polyoxoanion-stabilized nanoparticle formation and stabilization system. That comparison reveals closely analogous, solution Ir(1,5-COD)(+) or Ir(1,5-COD)Cl-mediated, mechanisms of nanoparticle formation. Overall, the hypothesis supported by this work is that these and analogous studies hold promise of providing a way to transfer the synthetic and mechanistic insights, from the modern revolution in nanoparticle synthesis and characterization in solution, to the rational, mechanism-directed syntheses of solid oxide-supported nanoparticle heterogeneous catalysts, also in contact with solution.  相似文献   
949.
Peptides identified from combinatorial peptide libraries have been shown to bind to a variety of abiotic surfaces. Biotic-abiotic interactions can be exploited to create hybrid materials with interesting electronic, optical, or catalytic properties. Here we show that peptides identified from a combinatorial phage display peptide library assemble preferentially to the edge or planar surface of graphene and can affect the electronic properties of graphene. Molecular dynamics simulations and experiments provide insight into the mechanism of peptide binding to the graphene edge.  相似文献   
950.
The use of accurate quartic force fields together with vibrational configuration interaction recently predicted gas phase fundamental vibrational frequencies of the trans-HOCO radical to within 4 cm(-1) of experimental results for the two highest frequency modes. Utilizing the same approach, we are providing a full list of fundamental vibrational frequencies and spectroscopic constants for the cis-HOCO system in both radical and anionic forms. Our predicted geometrical parameters of the cis-HOCO radical match experiment and previous computation to better than 1% deviation, and previous theoretical work agrees equally well for the anion. Correspondence between vibrational perturbation theory and variational vibrational configuration interaction for prediction of the frequencies of each mode is strong, better than 5 cm(-1), except for the torsional motion, similar to what has been previously identified in the trans-HOCO radical. Among other considerations, our results are immediately applicable to dissociative photodetachment experiments which initially draw on the cis-HOCO anion since it is the most stable conformer of the anion and is used to gain insight into the portion of the OH + CO potential surface where the HOCO radical is believed to form, and we are also providing highly accurate electron binding energies relevant to these experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号