首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9274篇
  免费   276篇
  国内免费   63篇
化学   6309篇
晶体学   88篇
力学   270篇
综合类   1篇
数学   1353篇
物理学   1592篇
  2022年   76篇
  2021年   85篇
  2020年   171篇
  2019年   128篇
  2018年   90篇
  2017年   94篇
  2016年   204篇
  2015年   164篇
  2014年   209篇
  2013年   430篇
  2012年   488篇
  2011年   595篇
  2010年   307篇
  2009年   242篇
  2008年   524篇
  2007年   488篇
  2006年   491篇
  2005年   474篇
  2004年   447篇
  2003年   303篇
  2002年   334篇
  2001年   102篇
  2000年   106篇
  1999年   85篇
  1998年   90篇
  1997年   112篇
  1996年   155篇
  1995年   109篇
  1994年   78篇
  1993年   103篇
  1992年   81篇
  1991年   91篇
  1990年   93篇
  1989年   70篇
  1988年   82篇
  1987年   68篇
  1986年   61篇
  1985年   118篇
  1984年   136篇
  1983年   95篇
  1982年   123篇
  1981年   110篇
  1980年   94篇
  1979年   86篇
  1978年   116篇
  1977年   100篇
  1976年   81篇
  1975年   72篇
  1974年   70篇
  1973年   62篇
排序方式: 共有9613条查询结果,搜索用时 328 毫秒
991.
The photooxidation of a mustard‐gas simulant, 2‐chloroethyl ethyl sulfide (CEES), is studied using a porphyrin‐based metal–organic framework (MOF) catalyst. At room temperature and neutral pH value, singlet oxygen is generated by PCN‐222/MOF‐545 using an inexpensive and commercially available light‐emitting diode. The singlet oxygen produced by PCN‐222/MOF‐545 selectively oxidizes CEES to the comparatively nontoxic product 2‐chloroethyl ethyl sulfoxide (CEESO) without formation of the highly toxic sulfone product. In comparison to current methods, which utilize hydrogen peroxide as an oxidizing agent, this is a more realistic, convenient, and effective method for mustard‐gas detoxification.  相似文献   
992.
A method for modifying the external surfaces of a series of nanoscale metal–organic frameworks (MOFs) with 1,2‐dioleoyl‐sn‐glycero‐3‐phosphate (DOPA) is presented. A series of zirconium‐based nanoMOFs of the same topology (UiO‐66, UiO‐67, and BUT‐30) were synthesized, isolated as aggregates, and then conjugated with DOPA to create stably dispersed colloids. BET surface area analysis revealed that these structures maintain their porosity after surface functionalization, providing evidence that DOPA functionalization only occurs on the external surface. Additionally, dye‐labeled ligand loading studies revealed that the density of DOPA on the surface of the nanoscale MOF correlates to the density of metal nodes on the surface of each MOF. Importantly, the surface modification strategy described will allow for the general and divergent synthesis and study of a wide variety of nanoscale MOFs as stable colloidal materials.  相似文献   
993.
This review is devoted to the application of MS using soft ionization methods with a special emphasis on electrospray ionization, atmospheric pressure photoionization and matrix‐assisted laser desorption/ionization MS and tandem MS (MS/MS) for the elucidation of the chemical structure of native and modified lignins. We describe and critically evaluate how these soft ionization methods have contributed to the present‐day knowledge of the structure of lignins. Herein, we will introduce new nomenclature concerning the chemical state of lignins, namely, virgin released lignins (VRLs) and processed modified lignins (PML). VRLs are obtained by liberation of lignins through degradation of vegetable matter by either chemical hydrolysis and/or enzymatic hydrolysis. PMLs are produced by subjecting the VRL to a series of further chemical transformations and purifications that are likely to alter their original chemical structures. We are proposing that native lignin polymers, present in the lignocellulosic biomass, are not made of macromolecules linked to cellulose fibres as has been frequently reported. Instead, we propose that the lignins are composed of vast series of linear related oligomers, having different lengths that are covalently linked in a criss‐cross pattern to cellulose and hemicellulose fibres forming the network of vegetal matter. Consequently, structural elucidation of VRLs, which presumably have not been purified and processed by any other type of additional chemical treatment and purification, may reflect the structure of the native lignin. In this review, we present an introduction to a MS/MS top–down concept of lignin sequencing and how this technique may be used to address the challenge of characterizing the structure of VRLs. Finally, we offer the case that although lignins have been reported to have very high or high molecular weights, they might not exist on the basis that such polymers have never been identified by the mild ionizing techniques used in modern MS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
994.
995.
The use of aqueous normal‐phase chromatography is explored as a possible format for the analysis of the forensically significant compounds ethyl glucuronide and ethyl sulfate. Standard solutions of the two compounds are used to verify the retention capabilities of two stationary phases (diamond hydride and undecanoic acid). These results are then compared to data obtained on hair extracts to determine if any matrix effects exist with respect to both retention and peak shape. The undecanoic stationary phase is used for the establishment of calibration curves for quantitative analysis. These curves are utilized to determine the concentration of ethyl glucuronide in several hair samples tested.  相似文献   
996.
Rectangular arrays of pyramidal recesses coated by silver film are investigated by means of polarization‐resolved nonlinear microscopy at 900 nm fundamental wavelength, demonstrating strong dependence of the dipole‐allowed SHG upon the lattice parameters. The plasmonic band gap causes nearly complete SHG suppression in arrays of 650 nm periodicity, whereas a sharp resonance at 550 nm periodicity is observed due to excitation of band edge Bloch states at fundamental frequency, accompanied by symmetry‐constrained interactions with similar modes at the second‐harmonic frequency. Additionally, coupling with modes at the bottom side of the silver film may lead to extraordinary optical transmission, opening a channel for SHG from the highly nonlinear GaAs substrate. Changing the lattice geometry enables SHG intensity modulation over three orders of magnitude, while the effective nonlinear anisotropy can be continuously switched between the two lattice directions, reaching values as high as ±0.96.

  相似文献   

997.
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface–core doubly cross‐linked micelles yielded carboxylic acid‐containing hydrophobic pockets within the water‐soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine‐ and acid‐functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.  相似文献   
998.
Here we demonstrate that neat reactions of amphoteric azoles with more basic azoles give a family of finely tunable, nonstoichiometric liquids which are useful for N‐donor coordination chemistry. Reacting 4,5‐dicyanoimidazole (4,5‐DCNIm) with 1‐methylimidazole (1‐mim) gives new compounds with composition‐dependent speciation. Two crystalline compounds, a 1:1 protic salt, [H(1‐mim)][4,5‐DCNIm], and a 1:2 salt co‐crystal, [H(1‐mim)][4,5‐DCNIm]?4,5‐DCNIm, were isolated and structurally characterized, while differential scanning calorimetry revealed both suppression of crystallization and the presence of neutral and anionic species in the melt. Reactions of Cu(NO3)2?2.5 H2O, CuO, and ZnO with the neat 2:1 1‐mim/4,5‐DCNIm melt resulted in the isolation of entirely N‐donor ligated complexes of the formula M(4,5‐DCNIm)2(1‐mim)4 (M=Cu, Zn).  相似文献   
999.
Poly ((ethylene oxide)‐b‐(propylene oxide)‐b‐(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid‐labile acetal moieties in the backbone of poloxamers to generate acid‐cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate‐protected vinyl ether to introduce acetal units. Three cleavable PEO‐PPO‐PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol−1; Mn,PEO = 2200, 3600, 4750 g·mol−1) have been synthesized using anionic ring‐opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06–1.08). Surface tension measurements reveal surface‐active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid‐triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation “on demand.”

  相似文献   

1000.
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin–TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin–TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein–DNA complexes.
Graphical Abstract ?
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号