首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8670篇
  免费   427篇
  国内免费   5篇
化学   6664篇
晶体学   53篇
力学   167篇
数学   1229篇
物理学   989篇
  2023年   76篇
  2022年   53篇
  2021年   76篇
  2020年   136篇
  2019年   159篇
  2018年   157篇
  2017年   171篇
  2016年   342篇
  2015年   307篇
  2014年   338篇
  2013年   609篇
  2012年   715篇
  2011年   780篇
  2010年   433篇
  2009年   319篇
  2008年   678篇
  2007年   644篇
  2006年   533篇
  2005年   530篇
  2004年   436篇
  2003年   341篇
  2002年   294篇
  2001年   68篇
  2000年   63篇
  1999年   66篇
  1998年   48篇
  1997年   55篇
  1996年   70篇
  1995年   42篇
  1994年   29篇
  1993年   35篇
  1992年   28篇
  1991年   29篇
  1990年   27篇
  1989年   27篇
  1988年   22篇
  1987年   23篇
  1986年   35篇
  1985年   41篇
  1984年   40篇
  1983年   25篇
  1982年   30篇
  1981年   35篇
  1980年   16篇
  1979年   14篇
  1978年   8篇
  1977年   11篇
  1976年   9篇
  1975年   11篇
  1974年   9篇
排序方式: 共有9102条查询结果,搜索用时 22 毫秒
971.
972.
The synthesis and characterization of novel ruthenium(IV) complexes [Ru(η(3):η(3)-C(10)H(16))Cl(2)L] [L = 3-methylpyrazole (2b), 3,5-dimethylpyrazole (2c), 3-methyl-5-phenylpyrazole (2d), 2-(1H-pyrazol-5-yl)phenol (2e), 6-azauracile (3), and 1H-indazol-3-ol (4)] are reported. Complex 2e is converted to the chelated complex [Ru(η(3):η(3)-C(10)H(16))Cl(κ(2)-N,O-2-(1H-pyrazol-3-yl)phenoxy)] (5) by treatment with an excess of NaOH. All of the ligands feature N-H, O-H, or C═O as the potential hydrogen-bonding group. The structures of complexes 2a-2c, 2e, 3, and 5 in the solid state have been determined by X-ray diffraction. Complexes 2a-2c and 3, which contain the pyrazole N-H group, exhibit intra- and intermolecular hydrogen bonds with chloride ligands [N-H···Cl distances (?): intramolecular, 2.30-2.78; intermolecular, 2.59-2.77]. Complexes 2e and 3 bearing respectively O-H and C═O groups also feature N-H···O interactions [intramolecular (2e), 2.27 ?; intermolecular (3), 2.00 ?]. Chelated complex 5, lacking the O-H group, only shows an intramolecular N-H···Cl hydrogen bonding of 2.42 ?. The structure of complex 3, which turns out to be a dimer in the solid state through a double intermolecular N-H···O hydrogen bonding, has also been investigated in solution (CD(2)Cl(2)) by NMR diffusion studies. Diffusion-ordered spectroscopy experiments reveal an equilibrium between monomer and dimer species in solution whose extension depends on the temperature, concentration, and coordinating properties of the solvent. Preliminary catalytic studies show that complex 3 is highly active in the redox isomerization of the allylic alcohols in an aqueous medium under very mild reaction conditions (35 °C) and in the absence of a base.  相似文献   
973.
The ligand class 2,2'-pyridylpyrrolide is surveyed, both for its structural features and its electronic structure, when attached to monovalent K, Cu, Ag, Au, and Rh. The influence of pyrrolide ring substituents is studied, as well as the question of push/pull interaction between the pyridyl and pyrrolide halves. The π donor ability of the pyrrolide is found to be less than that of an analogous phenyl. However, in contrast to the phenyl analog, the HOMO is pyrrolide π in character for pyridylpyrrolide complexes of copper and rhodium, while it is conventionally metal localized for planar, d(8) rhodium pyridylphenyl. Monovalent three-coordinate copper complexes show great deviations from Y-shaped toward T-shaped structures, including cases where the pyridyl ligand bonds only weakly.  相似文献   
974.
Liquid-vapor interfacial properties of square well chains are calculated. Surface tension, orthobaric densities, and vapor pressures are reported. Spinodal decomposition with a discontinuous molecular dynamics simulation program is used to obtain the results which are compared to previously published data for orthobaric densities and vapor pressures. In order to analyze the effect of the chain stiffness results for near tangent and overlapping linear chains as well as angled chains are obtained. Properties are calculated for linear chains of 2, 4, and 8 spheres for intramolecular distances of 0.97, 0.6, and 0.4 as well as for angled chains of 4 and 8 spheres and intramolecular distances of 0.4. The complete series of fully flexible near tangent square well chains is also studied (chains of 2, 4, 8, 12, and 16 particles with intramolecular distances of 0.97). The corresponding states principle applies to most of the systems considered. Critical properties values are reported as obtained from orthobaric densities, surface tensions, and vapor pressures. For the near tangent chains the critical temperatures increase with chain length but the rate of increment tends to zero for the longest chains considered. When the stiffness of the chain increases (intramolecular distance from 1 , 0.6, and 0.4) this saturation effect is either not present or reverses itself. The surface tension increases with the length of the chain while the width of the interface decreases.  相似文献   
975.
Molecular aggregates are formed by heteronuclear vibrating square-well dumbbells. In a recent article [G. A. Chapela and J. Alejandre, J. Chem. Phys., 132(10), 104704 (2010)], it is shown that heteronuclear vibrating square-well dumbbells with a diameter ratio between particles of 1/2 and interacting potential ratio of 4 form micelles of different sizes and shapes which manifest themselves in both the liquid and vapor phases, up to and above the critical point. This means that micellization and phase separation are present simultaneously in this simple model. These systems present a maximum in the critical temperature when plotted against the potential well depth of the second particle ε(2). In the same publication, it was speculated that the formation of micelles was responsible for the appearance of the maximum. A thorough study on this phenomena is presented here and it is found that there is a threshold on the size of the second particle and its corresponding depth of interaction potential, where the micelles are formed. If the diameter and well depth of the second particle are small enough for the first and deep enough for the second, micelles are formed. For σ(2)/σ(1) between 0.25 and 0.65 and ε(2)/ε(1) larger than 5.7, micelles are formed up to and above the critical temperature. Outside these ranges micelles appear only at temperatures lower than the critical point. There is a strong temperature dependence on the formation and persistence of the aggregates. For the deepest wells and large enough second particles, a gel interconnected aggregate is obtained. In this work, the micelles are formed at temperatures as low as the triple point and as high as the critical point and, in some cases, persist well above it. The presence of these maxima in critical temperatures T(c) when plotted against ε(2) as follows. At lower values of ε(2), an increase of T(c) is obtained as is expected by the increase of the attractive volume as indicated by the principle of corresponding states. As ε(2) increases further, the formation of molecular aggregates produce a saturation effect of the deepening of the potential well by encapsulating the particles of the second kind inside the micelles, so the resulting T(c) represents a new poly disperse system of molecular aggregates and not the original heteronuclear vibrating square-well dumbbells. The surface tension is also analyzed for these systems, and it is shown that decreases with increasing attraction due to the formation of molecular aggregates.  相似文献   
976.
Much has been done to study the interplay between geometric and energetic effects on the protein folding energy landscape. Numerical techniques such as molecular dynamics simulations are able to maintain a precise geometrical representation of the protein. Analytical approaches, however, often focus on the energetic aspects of folding, including geometrical information only in an average way. Here, we investigate a semi-analytical expression of folding that explicitly includes geometrical effects. We consider a Hamiltonian corresponding to a Gaussian filament with structure-based interactions. The model captures local features of protein folding often averaged over by mean-field theories, for example, loop contact formation and excluded volume. We explore the thermodynamics and folding mechanisms of beta-hairpin and alpha-helical structures as functions of temperature and Q, the fraction of native contacts formed. Excluded volume is shown to be an important component of a protein Hamiltonian, since it both dominates the cooperativity of the folding transition and alters folding mechanisms. Understanding geometrical effects in analytical formulae will help illuminate the consequences of the approximations required for the study of larger proteins.  相似文献   
977.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   
978.
Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 ± 1 μM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.  相似文献   
979.
Emissive molecular probes based on amino acid moieties are very appealing because of their application as new building blocks in peptide synthesis. Two new bioinspired coumarin probes (L1 and L2) were synthesized and fully characterized by elemental analysis, infrared, (1)H NMR, (13)C NMR, UV-vis absorption and emission spectroscopy, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), lifetime measurements, and X-ray crystal diffraction. Their sensing ability toward alkaline earth, transition, and post-transition metal ions (Ca(2+), Zn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), Ag(+), and Al(3+)) and their acid-base behavior (H(+), OH(-)) were explored in absolute ethanol by absorption and fluorescence spectroscopy. Compound L1 shows a strong complexation constant with the soft metal ions Zn(2+), Cd(2+), and Ag(+). Compound L2 shows a high fluorescence quantum yield, and it could be used as a non-pH-dependent fluorescent biological probe. Very small gold nanoparticles (AuNPs) using compounds L1 and L2 as stabilizers were obtained by using a reductive method and were characterized by UV-vis, light scattering, and transmission electron microscopy (TEM). Dynamic light scattering and TEM studies show that the formation of small nanoparticles is around 4.27 ± 0.64 nm for L1 and around 2.69 ± 0.96 nm for L2. The new stable Cou@AuNPs behaved as supramolecular chemosensors, which have been selective for the heavy element Hg(2+), with a concomitant change of color from pink to dark red/brown and an increase of size up to 100-fold.  相似文献   
980.
Four hosts (7-10) containing 2,6-bisamidopyridine- and 2,5-bisamidopyrrole-bearing pyridyl or 1,8-naphthyridyl groups have been prepared and their structures studied by a combination of multinuclear NMR spectroscopy and X-ray crystallography. Their behavior in molecular recognition of urea derivatives, including (+)-biotin methyl ester, has been approached by molecular modeling (Monte Carlo conformational search, AMBER force field). The minimum energy values for the complexes are correlated with the experimental binding energies determined by means of (1)H NMR titrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号