首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3621篇
  免费   121篇
  国内免费   18篇
化学   2333篇
晶体学   13篇
力学   94篇
数学   769篇
物理学   551篇
  2023年   37篇
  2022年   82篇
  2021年   88篇
  2020年   64篇
  2019年   90篇
  2018年   66篇
  2017年   70篇
  2016年   142篇
  2015年   115篇
  2014年   124篇
  2013年   214篇
  2012年   270篇
  2011年   298篇
  2010年   165篇
  2009年   173篇
  2008年   239篇
  2007年   234篇
  2006年   211篇
  2005年   176篇
  2004年   160篇
  2003年   101篇
  2002年   103篇
  2001年   41篇
  2000年   43篇
  1999年   32篇
  1998年   26篇
  1997年   24篇
  1996年   32篇
  1995年   13篇
  1994年   19篇
  1993年   17篇
  1992年   24篇
  1991年   14篇
  1990年   23篇
  1989年   10篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   19篇
  1984年   22篇
  1983年   11篇
  1982年   7篇
  1981年   14篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1974年   7篇
  1971年   6篇
  1963年   5篇
  1945年   5篇
排序方式: 共有3760条查询结果,搜索用时 0 毫秒
101.
In the search for new high-temperature superconductors, it has been proposed that there are strong similarities between the fluoroargentate AgF2 and the cuprate La2CuO4. We explored the origin of the possible layered structure of AgF2 by studying its parent high-symmetry phase and comparing these results with those of a seemingly analogous cuprate, CuF2. Our findings first stress the large differences between CuF2 and AgF2. Indeed, the parent structure of AgF2 is found to be cubic, naturally devoid of any layering, even though Ag2+ ions occupy trigonal sites that, nevertheless, allow the existence of a Jahn-Teller effect. The observed Pbca orthorhombic phase is found when the system is cooperatively distorted by a local E⊗e trigonal Jahn-Teller effect around the silver sites that creates both geometrical and magnetic layering. While the distortion implies that two Ag2+−F bonds increase their distance by 15 % and become softer, our simulations indicate that covalent bonding and interlayer electron hopping is strong, unlike the situation in cuprate superconductors, and that, in fact, exfoliation of individual planes might be a harder task than previously suggested. As a salient feature, these results prove that the actual magnetic structure in AgF2 is a direct consequence of vibronic contributions involved in the Jahn-Teller effect. Finally, our findings show that, due to the multiple minima intrinsic to the Jahn-Teller energy surface, the system is ferroelastic, a property that is strongly coupled to magnetism in this argentate.  相似文献   
102.
New pyranoid ε‐sugar amino acids were designed as building blocks, in which the carboxylic acid and the amine groups were placed in positions C2 and C3 with respect to the tetrahydropyran oxygen atom. By using standard solution‐phase coupling procedures, cyclic homooligomers containing pyranoid ε‐sugar amino acids were synthesized. Conformation analysis was performed by using NMR spectroscopic experiments, FTIR spectroscopic studies, X‐ray analysis, and a theoretical conformation search. These studies reveal that the presence of a methoxy group in the position C4 of the pyran ring produces an important structural change in the cyclodipeptides. When the methoxy groups are present, the structure collapses through interresidue hydrogen bonds between the oxygen atoms of the pyran ring and the amide protons. However, when the cyclodipeptide lacks the methoxy groups, a U‐shape structure is adopted, in which there is a hydrophilic concave face with four oxygen atoms and two amide protons directed toward the center of the cavity. Additionally, we found important evidence of the key role played by weak electrostatic interactions, such as the five‐membered hydrogen‐bonded pseudocycles (C5) between the amide protons and the ether oxygen atoms, in the conformation equilibrium of the macrocycles and in the cyclization step of the cyclic tetrapeptides.  相似文献   
103.
The optimized molecular structures, harmonic vibrational wavenumbers, and the corresponding vibrational assignments of (1S,2S)-tramadol and (1R,2R)-tramadol are computationally examined using the B3LYP density functional theory method together with the standard 6–311++G(d,p) and def2-TVZP basis sets. The optimized structures show that phenolic rings of both 1R,2R and 1S,2S tramadol adopt planar geometry, which are slightly distorted due to the substitution at the meta-position; and the six-membered cyclohexane adopts a slightly distorted chair conformation. The 1S,2S enantiomer is energetically more favorable than 1R,2R with the energy differences of 1.32 and 1.03 kcal/mol obtained at B3LYP/6–311++G(d,p) and B3LYP/Def2-TVZP levels, respectively. The analysis of the binding pocket in the silico molecular docking with the m-opioid receptor shows that it originated two clusters with the 1S,2S enantiomer and one cluster with the 1R,2R enantiomer of tramadol. The results point to a more stable complex of the m-opioid receptor with the 1R,2R enantiomer of tramadol.  相似文献   
104.
The encapsulation of copper inside a cyclodextrin capped with an N‐heterocyclic carbene (ICyD) allowed both to catch the elusive monomeric (L)CuH and a cavity‐controlled chemoselective copper‐catalyzed hydrosilylation of α,β‐unsaturated ketones. Remarkably, (α‐ICyD)CuCl promoted the 1,2‐addition exclusively, while (β‐ICyD)CuCl produced the fully reduced product. The chemoselectivity is controlled by the size of the cavity and weak interactions between the substrate and internal C?H bonds of the cyclodextrin.  相似文献   
105.
Biofilms are communities of microorganisms that can colonize biotic and abiotic surfaces and thus play a significant role in the persistence of bacterial infection and resistance to antimicrobial. About 65% and 80% of microbial and chronic infections are associated with biofilm formation, respectively. The increase in infections by multi-resistant bacteria instigates the need for the discovery of novel natural-based drugs that act as inhibitory molecules. The inhibition of diguanylate cyclases (DGCs), the enzyme implicated in the synthesis of the second messenger, cyclic diguanylate (c-di-GMP), involved in the biofilm formation, represents a potential approach for preventing the biofilm development. It has been extensively studied using PleD protein as a model of DGC for in silico studies as virtual screening and as a model for in vitro studies in biofilms formation. This study aimed to search for natural products capable of inhibiting the Caulobacter crescentus enzyme PleD. For this purpose, 224,205 molecules from the natural products ZINC15 database, have been evaluated through molecular docking and molecular dynamic simulation. Our results suggest trans-Aconitic acid (TAA) as a possible starting point for hit-to-lead methodologies to obtain new inhibitors of the PleD protein and hence blocking the biofilm formation.  相似文献   
106.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.  相似文献   
107.
According to the regulations of the United States Food and Drug Administration (FDA), organic solvents should be limited in pharmaceutical and food products due to their inherent toxicity. For this reason, this short paper proposes different mechanical treatments to extract lycopene without organic solvents to produce an edible sunflower oil (SFO) enriched with lycopene from fresh pink guavas (Psidium guajava L.) (FPGs). The methodology involves the use of SFO and a combination of mechanical treatments: a waring blender (WB), WB+ high-shear mixing (HSM) and WB+ ultrafine friction grinding (UFFG). The solid:solvent (FPG:SFO) ratios used in all the techniques were 1:5, 1:10 and 1:20. The results from optical microscopy and UV–vis spectroscopy showed a correlation between the concentration of lycopene in SFO, vegetable tissue diameters and FPG:SFO ratio. The highest lycopene concentration, 18.215 ± 1.834 mg/g FPG, was achieved in WB + UFFG with an FPG:SFO ratio of 1:20. The yield of this treatment was 66% in comparison to the conventional extraction method. The maximal lycopene concentration achieved in this work was significantly higher than the values reported by other authors, using high-pressure homogenization for tomato peel and several solvents such as water, SFO, ethyl lactate and acetone.  相似文献   
108.
The dependability of systems and networks has been the target of research for many years now. In the 1970s, what is now known as the top conference on dependability—The IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)—emerged gathering international researchers and sparking the interest of the scientific community. Although it started in niche systems, nowadays dependability is viewed as highly important in most computer systems. The goal of this work is to analyze the research published in the proceedings of well-established dependability conferences (i.e., DSN, International Symposium on Software Reliability Engineering (ISSRE), International Symposium on Reliable Distributed Systems (SRDS), European Dependable Computing Conference (EDCC), Latin-American Symposium on Dependable Computing (LADC), Pacific Rim International Symposium on Dependable Computing (PRDC)), while using Natural Language Processing (NLP) and namely the Latent Dirichlet Allocation (LDA) algorithm to identify active, collapsing, ephemeral, and new lines of research in the dependability field. Results show a strong emphasis on terms, like ‘security’, despite the general focus of the conferences in dependability and new trends that are related with ’machine learning’ and ‘blockchain’. We used the PRDC conference as a use case, which showed similarity with the overall set of conferences, although we also found specific terms, like ‘cyber-physical’, being popular at PRDC and not in the overall dataset.  相似文献   
109.
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.  相似文献   
110.
Computational simulation of colloidal systems make use of empirical interaction potentials that are founded in well-established theory. In this work, we have performed parallel tempering Monte Carlo (PTMC) simulations to calculate heat capacity and to assess structural transitions, which may occur in charged colloidal clusters whose effective interactions are described by a sum of pair potentials with attractive short-range and repulsive long-range components. Previous studies on these systems have shown that the global minimum structure varies from spherical-type shapes for small-size clusters to Bernal spiral and “beaded-necklace” shapes at intermediate and larger sizes, respectively. In order to study both structural transitions and dissociation, we have organized the structures appearing in the PTMC calculations by three sets according to their energy: (i) low-energy structures, including the global minimum; (ii) intermediate-energy “beaded-necklace” motifs; (iii) high-energy linear and branched structures that characterize the dissociative clusters. We observe that, depending on the cluster, either peaks or shoulders on the heat–capacity curve constitute thermodynamics signatures of dissociation and structural transitions. The dissociation occurs at T=0.20 for all studied clusters and it is characterized by the appearance of a significant number of linear structures, while the structural transitions corresponding to unrolling the Bernal spiral are quite dependent on the size of the colloidal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号