全文获取类型
收费全文 | 985篇 |
免费 | 61篇 |
国内免费 | 3篇 |
专业分类
化学 | 838篇 |
晶体学 | 7篇 |
力学 | 12篇 |
数学 | 89篇 |
物理学 | 103篇 |
出版年
2023年 | 9篇 |
2022年 | 13篇 |
2021年 | 21篇 |
2020年 | 22篇 |
2019年 | 13篇 |
2018年 | 16篇 |
2017年 | 10篇 |
2016年 | 41篇 |
2015年 | 34篇 |
2014年 | 40篇 |
2013年 | 40篇 |
2012年 | 74篇 |
2011年 | 88篇 |
2010年 | 41篇 |
2009年 | 48篇 |
2008年 | 82篇 |
2007年 | 76篇 |
2006年 | 92篇 |
2005年 | 78篇 |
2004年 | 52篇 |
2003年 | 32篇 |
2002年 | 32篇 |
2001年 | 17篇 |
2000年 | 12篇 |
1999年 | 4篇 |
1998年 | 11篇 |
1997年 | 10篇 |
1996年 | 6篇 |
1995年 | 5篇 |
1994年 | 6篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1984年 | 4篇 |
1982年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有1049条查询结果,搜索用时 31 毫秒
61.
Jordi Contreras J. Idris Jones 《Phosphorus, sulfur, and silicon and the related elements》2013,188(1-2):67-68
Abstract Various sulfides are easily oxidized selectively to the corresponding sulfoxides in quantitative yields by iodosylarene (ArIO) catalyzed by metalloporphyrin (TPPM(III)Cl (M [dbnd] Fe, Mn)). The oxidation system is demonstrated to be a possible model for monooxygenase in the study of the stereochemistry of these sulfoxides. Metalloporphyrin-iodosylarene can initially equilibrate with the oxometalloporphyrin (TPPM(V)=O·Cl) formed in situ. The initial process may involve one-electron transfer from the sulfide to the intermediate oxometalloporphyrin followed by coupling of two resulting charged products, and/or nucleophilic attack of sulfide on oxometalloporphyrin oxygen. The overall reactions are depicted by paths with different electron demands from the results of Hammett plots. 相似文献
62.
Serra T Borrego C Quintana X Calderer L López R Colomer J 《Photochemistry and photobiology》2009,85(1):321-331
Nonphotochemical quenching (NPQ) is a well-known collection of different photoprotective mechanisms of plants and algae to avoid photodamage under an excess of light energy. In order to evaluate the overall effect of NPQ processes on the fluorometric determination of in vivo Chl a from a phytoplankton community dominated by diatoms, we compared the results obtained by two different fluorometric field devices with the total concentration of extracted Chl a measured by HPLC ( in vitro Chl a ). A different set of measurements were made to assess the performance of these fluorometers at high, moderate and low irradiance conditions. The Fbbe fluorometer, which is capable of distinguishing different algal groups according to their pigment content, allowed a better determination of in vivo Chl a under high irradiance conditions, with only a 10% mean difference from the in vitro Chl a concentration. In turn, the FMII fluorometer underestimated by as much as 50% the in vitro Chl a concentration under the same light conditions. As data from both fluorometers were in accordance with the in vitro Chl a values at moderate irradiance levels, the differences observed at high irradiances were attributed to the decrease in the yield of Chl a fluorescence caused by photoprotective NPQ processes. Accordingly, we estimated the effect of NPQ processes on the in vivo Chl a determination and the results allow us to provide an equation to correct this effect when in situ fluorometric measurements are carried out under high irradiance regimes. Our results demonstrate that under certain circumstances NPQ seriously compromises the results obtained by in situ fluorometric probes and highlight the need for a cautious interpretation of field data under such environmental conditions. 相似文献
63.
Dr. Marçal Capdevila‐Cortada Dr. Jordi Ribas‐Arino Dr. Alain Chaumont Prof. Georges Wipff Prof. Juan J. Novoa 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(47):17037-17046
Purely organic radical ions dimerize in solution at low temperature, forming long, multicenter bonds, despite the metastability of the isolated dimers. Here, we present the first computational study of these π‐dimers in solution, with explicit consideration of solvent molecules and finite temperature effects. By means of force‐field and ab initio molecular dynamics and free energy simulations, the structure and stability of π‐[TCNE]22? (TCNE=tetracyanoethylene) dimers in dichloromethane have been evaluated. Although the dimers dissociate at room temperature, they are stable at 175 K and their structure is similar to the one in the solid state, with a cofacial arrangement of the radicals at an interplanar separation of approximately 3.0 Å. The π‐[TCNE]22? dimers form dissociated ion pairs with the NBu4+ counterions, and their first solvation shell comprises approximately 20 CH2Cl2 molecules. Among them, the eight molecules distributed along the equatorial plane of the dimer play a key role in stabilizing the dimer through bridging C?H???N contacts. The calculated free energy of dimerization of TCNE . ? in solution at 175 K is ?5.5 kcal mol?1. These results provide the first quantitative model describing the pairing of radical ions in solution, and demonstrate the key role of solvation forces on the dimerization process. 相似文献
64.
Dr. Oscar Bertran Dr. Guillermo Revilla‐López Dr. Jordi Casanovas Dr. Luis J. del Valle Dr. Pau Turon Prof. Dr. Jordi Puiggalí Prof. Dr. Carlos Alemán 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(19):6631-6636
In spite of the clinical importance of hydroxyapatite (HAp), the mechanism that controls its dissolution in acidic environments remains unclear. Knowledge of such a process is highly desirable to provide better understanding of different pathologies, as for example osteoporosis, and of the HAp potential as vehicle for gene delivery to replace damaged DNA. In this work, the mechanism of dissolution in acid conditions of HAp nanoparticles encapsulating double‐stranded DNA has been investigated at the atomistic level using computer simulations. For this purpose, four consecutive (multi‐step) molecular dynamics simulations, involving different temperatures and proton transfer processes, have been carried out. Results are consistent with a polynuclear decalcification mechanism in which proton transfer processes, from the surface to the internal regions of the particle, play a crucial role. In addition, the DNA remains protected by the mineral mold and transferred proton from both temperature and chemicals. These results, which indicate that biomineralization imparts very effective protection to DNA, also have important implications in other biomedical fields, as for example in the design of artificial bones or in the fight against osteoporosis by promoting the fixation of Ca2+ ions. 相似文献
65.
66.
Lucía Piñeiro‐López Dr. Norma Ortega‐Villar Prof. Dr. M. Carmen Muñoz Dr. Gábor Molnár Dr. Jordi Cirera Prof. Dr. Rafael Moreno‐Esparza Prof. Dr. Víctor M. Ugalde‐Saldívar Dr. Azzedine Bousseksou Prof. Dr. Eliseo Ruiz Prof. Dr. José A. Real 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(36):12741-12751
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis. 相似文献
67.
Tan TH Worthington RJ Pritchard RG Morral J Micklefield J 《Organic & biomolecular chemistry》2007,5(2):239-248
By chemically modifying or replacing the backbone of oligonucleotides it is possible to modulate the DNA and RNA recognition properties and fine-tune the physiochemical properties of oligomers. This is important because it challenges our understanding of natural nucleic acid structural and recognition properties and can lead to nucleic acid mimics with a wide range of applications in nucleic acid targeting, analysis or diagnostics. In this paper we describe the solid phase synthesis of pyrrolidine-amide oligonucleotide mimics (POMs) using Fmoc-peptide chemistry. This required the synthesis of adeninyl, cytosinyl, thyminyl and guaninyl pyrrolidine monomers, with Fmoc- and standard acyl-protecting groups on the exocyclic amino groups and nucleobases respectively. These monomers were used to synthesise several thyminyl and adeninyl POM pentamers, with modest coupling efficiency. The pentamers were purified by RP-HPLC, characterised by mass spectrometry and their DNA and RNA binding properties were investigated using UV thermal denaturation/renaturation experiments. This revealed that all the pentamers exhibit strong affinity for complementary nucleic acids. The further evaluation of longer mixed-sequence POMs is described in a second accompanying paper (R. J. Worthington et al., Org. Biomol. Chem., 2006, DOI: 10.1039/b613386j). 相似文献
68.
Andrés J Feliz M Fraxedas J Hernandez V López-Navarrete JT Llusar R Sauthier G Sensato FR Silvi B Bo C Campanera JM 《Inorganic chemistry》2007,46(6):2159-2166
X-ray structural data for the cubane-type clusters [Mo3CuS4(dmpe)3Cl4](+) and Mo3NiS4(dmpe)3Cl4 (dmpe = 1,2-bis(dimethylphosphino)ethane) with 16 metal electrons have been compared with optimized structural parameters calculated using "ab initio" methodologies. Compound Mo3NiS4(dmpe)3Cl4 crystallizes in the cubic noncentrosymmetric space group P213 with a Mo-Ni distance of 2.647 Angstrom, that is 0.2 Angstrom shorter than the Mo-Cu bond length in the isoelectronic copper cluster. The best agreement between theory and experiments has been obtained using the B3P86 method. In order to validate the B3P86 results, accurate infrared and Raman spectra have been acquired and the vibrational modes associated to the cubane-type Mo3M'S4 (M' = Cu or Ni) unit have been assigned theoretically. The electronic changes taking place when incorporating the M' into the Mo3S4 unit have been analyzed from a theoretical and experimental perspective. The bond dissociation energies between M'-Cl and Mo3S4 fragments show that formation of [Mo3CuS4(dmpe)3Cl4](+) is 135 kcal/mol energetically less favorable than the Ni incorporation. The more robust nature of the Mo3NiS4 fragment has been confirmed by mass spectrometry. The X-ray photoelectron spectroscopy (XPS) spectra of the trimetallic and tetrametallic complexes have been measured and the obtained binding energies compared with the computed electronic populations based on topological approaches of the electron localization function (ELF). The energies and shapes of the Cu 2p and Ni 2p lines indicate formal oxidation states of Cu(I) and Ni(II). However, the reductive addition of nickel into [Mo3S4(dmpe)3Cl3](+) causes a small decrease in the Mo 3d binding energies. This fact prevents an unambiguous assignment of an oxidation state in a conventional way, a circumstance that has been analyzed through the covariance of the electronic populations associated to the C(M') core and V(Mo3Ni) and V(S(2)') valence basins where Mo3NiS4 is a particularly electronically delocalized chemical entity. 相似文献
69.
von Seebach M Kozhushkov SI Schill H Frank D Boese R Benet-Buchholz J Yufit DS de Meijere A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(1):167-177
Diastereomeric meso- and d,l-bis(bicyclopropylidenyl) (5) were obtained upon oxidation with oxygen of a higher-order cuprate generated from lithiobicyclopropylidene (4) in 50 and 31 % yield, respectively. Their perdeuterated analogues meso-[D(14)]- and d,l-[D(14)]-5 were obtained along the same route from perdeuterated bicyclopropylidene [D(8)]-3 (synthesized in six steps in 7.4 % overall yield from [D(8)]-THF) in 20.5 % yield each. Dehalogenative coupling of 1,1-dibromo-2-cyclopropylcyclopropane (6) gave a mixture of all possible stereoisomers of 1,5-dicyclopropylbicyclopropylidene 16 in 69 % yield, from which (Z)-cis-16 was separated by preparative gas chromatography (26 % yield). The crystal structure of meso-5 looks like a superposition of the crystal structures of two outer bicyclopropylidene units (3) and one inner s-trans-bicyclopropyl unit, whereas the two outer cyclopropyl moieties adopt a gauche orientation with respect to the cyclopropane rings at the inner bicyclopropylidene units in (Z)-cis-16. Birch reduction with lithium in liquid ammonia of meso-5 and d,l-5 gave two pairs of diastereomeric quatercyclopropanes trans,trans-(R*,S*,R*, S*)-17/cis,trans-(R*,S*,R*,R*)-18 and trans,trans-(R*,S*,S*,R*)-19/cis,trans-(R*,S*,S*,S*)-20 in 97 and 76 % yield, respectively, in a ratio 9:1 for every pair. The latter diastereomer was also obtained as the sole product by Birch reduction of (Z)-cis-16 in 96 % yield. Under the same conditions, tetradecadeuterio analogues trans,trans-[D(14)]-(R*,S*,R*,S*)-17/cis,trans-[D(14)]-(R*, S*,R*,R*)-18 (8:1) and trans,trans-[D(14)]-(R*,S*,S*,R*)-19/cis,trans-[D(14)]-(R*,S*,S*,S*)-20 (12:1) were prepared from meso-[D(14)]-5 and d,l-[D(14)]-5 in 37 and 63 % yield, respectively. Reduction of meso-5 with diimine gave the cis,cis-quatercyclopropane (S*,S*,R*,R*)-21 as the main product (58 % yield) along with the cis,trans-diastereomer (S*,S*,R*,S*)-18 (29 % yield). Thus, five of the six possible diastereomeric quatercyclopropanes were obtained from meso-5, d,l-5, and (Z)-cis-16. The X-ray crystal structure analyses of trans,trans-(R*,S*,R*,S*)-17 and cis,cis-(S*,S*,R*,R*)-21 revealed for the both an unusual conformation in which the central bicyclopropyl unit adopts an s-trans-(antiperiplanar) orientation with phi=180.0 degrees , and the two terminal bicyclopropyl moieties adopt a synclinal conformation with phi=49.8 and 72.0 degrees , respectively. In solution the vicinal coupling constants (3)J(H,H) in trans,trans-(R*,S*,R*,S*)-[D(14)]-17, trans,trans-(R*,S*,S*,R*)-[D(14)]-19, trans,cis-(R*,S*,R*,R*)-[D(14)]-18 and trans,cis-(R*,S*,S*,S*)-[D(14)]-20 were found to be 4.1, 4.7, 5.9 and 5.9 Hz, respectively. This indicates a predominance of the all-gauche conformer in (R*,S*,R*,S*)-17 and a decreasing fraction of it in this sequence of the other diastereomers. 相似文献
70.
Jordi Faraudo Alex Travesset 《Colloids and surfaces. A, Physicochemical and engineering aspects》2007,300(3):287-292
In this paper, we argue that many of the fascinating electrostatic effects that take place in amphiphilic systems are strongly related to the particular organization of the oxygen atoms within each individual molecule. In particular, we focus on two effects: charge inversion and dielectric overscreening. For that purpose, we present molecular dynamics simulations of phosphatidic acid (DMPA2−) in the presence of divalent counterions. Our results show that the many oxygens present in DMPA2− cooperatively create strong binding sites for counterions, which in some cases lead to charge inversion. We also present an analysis of the role of interfacial water and relate our analysis to the phenomenon of dielectric overscreening. Several experimental implications are discussed in the conclusions. 相似文献