首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   5篇
化学   202篇
晶体学   2篇
力学   14篇
数学   37篇
物理学   54篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   15篇
  2013年   25篇
  2012年   33篇
  2011年   30篇
  2010年   17篇
  2009年   14篇
  2008年   23篇
  2007年   16篇
  2006年   11篇
  2005年   18篇
  2004年   9篇
  2003年   5篇
  2002年   13篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有309条查询结果,搜索用时 93 毫秒
101.
We report the successful fabrication of the various types of water soluble PEGylated magnetic complexes (PMCs) for magnetism-related biomedical applications. Various types of PMCs were synthesized and tested to accomplish phase transfer from organic to aqueous phase using monomethoxy polyethylene glycol (mPEG)-fatty acid amphiphilic block copolymers (PFs) through conjugation of the hydroxyl group of mPEG with the carboxyl group of fatty acids. We also carefully investigate their colloidal stabilities in aqueous phase according to the ratio of hydrophilic and hydrophobic lengths relying on different types of fatty acids. Synthesized PMCs clearly demonstrated high magnetic sensitivity under magnetic field as magnetic resonance (MR) contrast agents. Furthermore, PMCs exhibited sufficient cell viabilities and excellent cell affinities in an in vitro model. Our results demonstrated that our PMCs possessed the potential for highly efficient magnetism-related biomedical applications such as MR image agents, drug delivery and tracking of cells.  相似文献   
102.
Amine double-functionalized adsorbents were fabricated using silica gel as supports and their capabilities for CO2 capture were examined. Aminopropyltrimethoxysilane (1N-APS), and N1-(3-trimethoxysilylpropyl)diethylenetriamine (3N-APS) were used as grafted amine compounds, and tetraethylenepentamine and polyethyleneimine were used as impregnated species. The influence of double-functionalization method on the CO2 adsorption performance and textural properties of adsorbents was investigated. The adsorption capacity, the amine efficiency, and the thermal stability of double-functionalized sorbents depend strongly upon molecular variables associated with two different functional states (i.e., chemically grafted and physically impregnated amines). The temperature dependence of adsorption isotherms reveals that the CO2 adsorption behavior in the double-functionalized adsorbents follow the diffusion limitation model proposed by Xu et al. (Energy Fuels 16:1463–1469, 2002) where the CO2 adsorption is helped by the diffusion of impregnated amines. It is also found that the adsorption isotherm in the double-functionalized sorbent system with a proper choice for grafted and impregnated amines is nearly independent of temperature, which may offer a novel means to fabricate practically useful sorbents that can be used in a wide range of temperature without loss of CO2 adsorption capacity.  相似文献   
103.
Two‐photon microscopy is a powerful tool for studying biological systems. In search of novel two‐photon absorbing dyes for bioimaging, we synthesized a new anthracene‐based dipolar dye (anthradan) and evaluated its two‐photon absorbing and imaging properties. The new anthradan, 9,10‐bis(o‐dimethoxy‐phenyl)‐anthradan, absorbs and emits at longer wavelengths than acedan, a well‐known two‐photon absorbing dye. It is also stable under two‐photon excitation conditions and biocompatible, and thus used for two‐photon imaging of mouse organ tissues to show bright, near‐red fluorescence along with negligible autofluorescence. Such an anthradan thus holds promise as a new class of two‐photon absorbing dyes for the development of fluorescent probes and tags for biological systems.  相似文献   
104.
Huh YS  Choi JH  Huh KA  Kim KA  Park TJ  Hong YK  Kim do H  Hong WH  Lee SY 《Electrophoresis》2007,28(24):4748-4757
A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.  相似文献   
105.
The crystallization of monodisperse linear polyethylene confined in nanoporous alumina is investigated with the calorimetric measurements. We observe a drastic change in crystallization behavior, specifically nucleation, with a decrease in the pore diameter. Crystallization in relatively larger pores with the diameters of 62 and 110 nm occurs at lower temperatures within a very narrow range, whereas crystallization in smaller pores with diameters of 15-48 nm occurs at a higher and broad range of temperatures. Nucleation and crystallization kinetics in nanopores is discussed based on classical nucleation theory as well as the Avrami theory.  相似文献   
106.
Hicks JD  Huh CW  Legg AD  Roush WR 《Organic letters》2007,9(26):5621-5624
Treatment of unsaturated 1,5-diols 2 with TES-Cl (1.1 equiv), imidazole, and catalytic DMAP in 1:1 CH2Cl2-DMF at -78 degrees C effects selective silylation of the allylic alcohol with >95:5 chemoselectivity when the allylic and homoallylic alcohols are in similar steric environments.  相似文献   
107.
108.
109.
Hwang KY  Kwon SH  Jung SO  Lim HK  Jung WJ  Park CS  Kim JH  Suh KY  Huh N 《Lab on a chip》2011,11(21):3649-3655
We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 μL or 20 μL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system.  相似文献   
110.
One-dimensional Cu(OH)(2) or CuO nanostructures were fabricated using inorganic-organic chain assemblies, Cu(C(n)H(2n+1)X)(2)·nH(2)O (X = CO(2), SO(4)) as a lamellar nanoreactor, along with NaOH treatment. The shapes and aspect ratios of the Cu(OH)(2) or CuO nanostructures could be varied by adjusting the hydrophobicity of the lamellar nanoreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号