首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22995篇
  免费   2094篇
  国内免费   2016篇
化学   17364篇
晶体学   370篇
力学   783篇
综合类   153篇
数学   2283篇
物理学   6152篇
  2024年   42篇
  2023年   227篇
  2022年   610篇
  2021年   641篇
  2020年   628篇
  2019年   670篇
  2018年   542篇
  2017年   567篇
  2016年   876篇
  2015年   907篇
  2014年   1144篇
  2013年   1586篇
  2012年   1912篇
  2011年   2081篇
  2010年   1427篇
  2009年   1287篇
  2008年   1712篇
  2007年   1463篇
  2006年   1380篇
  2005年   1223篇
  2004年   992篇
  2003年   802篇
  2002年   891篇
  2001年   592篇
  2000年   476篇
  1999年   349篇
  1998年   245篇
  1997年   182篇
  1996年   214篇
  1995年   169篇
  1994年   145篇
  1993年   132篇
  1992年   116篇
  1991年   129篇
  1990年   99篇
  1989年   83篇
  1988年   53篇
  1987年   44篇
  1986年   34篇
  1985年   58篇
  1984年   37篇
  1983年   33篇
  1982年   30篇
  1981年   32篇
  1980年   22篇
  1979年   25篇
  1978年   26篇
  1977年   24篇
  1976年   26篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Hierarchical self‐assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self‐assembly of nanometer‐sized tubulin heterodimers into protofilaments, which then associate to form micron‐length‐scale, multi‐stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host‐guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly‐pseudorotaxanes that associate laterally with each other in a self‐shape‐complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly‐pseudorotaxanes that wind together to form a 4.5 nm wide multi‐stranded tubule.  相似文献   
982.
Rosacea is a common and chronic inflammatory skin disease that is characterized by dysfunction of the immune and vascular system. The excessive production and activation of kallikerin 5 (KLK5) and cathelicidin have been implicated in the pathogenesis of rosacea. Coptis chinensis Franch (CC) has been used as a medicinal herb in traditional oriental medicine. However, little is known about the efficacy and mechanism of action of CC in rosacea. In this study, we evaluate the effect of CC and its molecular mechanism on rosacea in human epidermal keratinocytes. CC has the capacity to downregulate the expression of KLK5 and cathelicidin, and also inhibits KLK5 protease activity, which leads to reduced processing of inactive cathelicidin into active LL-37. It was determined that CC ameliorates the expression of pro-inflammatory cytokines through the inhibition of LL-37 processing. In addition, it was confirmed that chitin, an exoskeleton of Demodex mites, mediates an immune response through TLR2 activation, and CC inhibits TLR2 expression and downstream signal transduction. Furthermore, CC was shown to inhibit the proliferation of human microvascular endothelial cells induced by LL-37, the cause of erythematous rosacea. These results demonstrate that CC improved rosacea by regulating the immune response and angiogenesis, and revealed its mechanism of action, indicating that CC may be a useful therapeutic agent for rosacea.  相似文献   
983.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
984.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   
985.
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.

We developed new class of designated antibodies targeting of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation at the immunodominant mucin domains.  相似文献   
986.
利用高分子反应统计理论,给出了非线性Af-Bg型自由基交替共聚反应的溶胶-凝胶分配方程和反应体系的凝凝胶化条件,这些结果是进一步研究与凝胶网络性能相关的网络结构参数的基础。  相似文献   
987.
新型不对称双季铵盐缓蚀剂在HCl中对Q235钢的缓蚀行为   总被引:6,自引:0,他引:6  
宋伟伟  张静  杜敏 《化学学报》2011,69(16):1851-1857
采用静态失重法、极化曲线法和交流阻抗法研究了自制的含咪唑啉环不对称双季铵盐缓蚀剂(DBA)在1 mol•L-1 HCl介质中对Q235钢的缓蚀性能, 并探讨了其在Q235钢表面的吸附行为. 结果表明, 缓蚀效率随DBA浓度增加而增大, 在25~55 ℃的实验温度范围内, 浓度为2.89×10-4 mol•L-1时, 缓蚀效率均在90%以上, 且缓蚀效率随温度升高而增大. 极化曲线测试显示DBA是一种阴极抑制为主的混合型缓蚀剂. 缓蚀剂在Q235钢表面的吸附过程为吸热过程, 其在Q235钢表面的吸附遵循Langmuir等温式, 属于化学吸附. 最后采用量子化学方法对DBA的缓蚀机理做了进一步分析.  相似文献   
988.
The acid and transport properties of the anhydrous Keggin‐type 12‐tungstophosphoric acid (H3PW12O40; HPW) have been studied by solid‐state 31P magic‐angle spinning NMR of absorbed trimethylphosphine oxide (TMPO) in conjunction with DFT calculations. Accordingly, 31P NMR resonances arising from various protonated complexes, such as TMPOH+ and (TMPO)2H+ adducts, could be unambiguously identified. It was found that thermal pretreatment of the sample at elevated temperatures (≥423 K) is a prerequisite for ensuring complete penetration of the TMPO guest probe molecule into HPW particles. Transport of the TMPO absorbate into the matrix of the HPW adsorbent was found to invoke a desorption/absorption process associated with the (TMPO)2H+ adducts. Consequently, three types of protonic acid sites with distinct superacid strengths, which correspond to 31P chemical shifts of 92.1, 89.4, and 87.7 ppm, were observed for HPW samples loaded with less than three molecules of TMPO per Keggin unit. Together with detailed DFT calculations, these results support the scenario that the TMPOH+ complexes are associated with protons located at three different terminal oxygen (Od) sites of the PW12O403− polyanions. Upon increasing the TMPO loading to >3.0 molecules per Keggin unit, abrupt decreases in acid strength and the corresponding structural variations were attributed to the change in secondary structure of the pseudoliquid phase of HPW in the presence of excessive guest absorbate.  相似文献   
989.
2‐Acetylcyclopentanone (2‐ACP), which is a β‐dicarbonyl compound, undergoes ketoenol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2‐ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm?1, respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2‐ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump–probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down‐ and uphill population transfer rate constants), we used the normalized volumes of the cross‐peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes.  相似文献   
990.
A new third‐generation biosensor for H2O2 assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of carbon nanotubes (CNTs)‐SBA‐15 modified gold electrode. The biological activity of HRP immobilizing in the composite film was characterized by UV‐vis spectra. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2. The effects of the experimental variables such as solution pH and working potential were investigated using steady‐state amperometry. Under the optimal conditions, the resulting biosensor showed a linear range from 1 µM to 7 mM and a detection limit of 0.5 µM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号